Skip to main content
Log in

Phosphotyrosine protein phosphatase and diabetic pregnancy: an association between low molecular weight acid phosphatase and degree of glycemic control

  • Research Articles
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Low molecular weight acid phosphatase encoded by the highly polymorphic locus ACP 1 is a member of the protein-tyrosin phosphatase family (PTPases) which plays an essential role in the control of receptor signalling through phosphotyrosine pathways. Recent experiments have shown that purified rat liver ACP, corresponding to human ACP1, is able to hydrolyze a phosphotyrosine-containing synthetic peptide corresponding to the 1146–1158 sequence of the human insulin receptor, and shows a high affinity for it. This prompted us to analyze the degree of glycemic control in relation to ACP1 genetic variability in a sample of 214 diabetic pregnant women including IDDM, NIDDM and gestational diabetes. The ACP1 genotype was also determined in 482 non-diabetic pregnant women. In diabetic women glycemic levels in thelast trimester of pregnancy appear to be significantly associated with the ACP1 genotype, and correlated positively with ACP1 enzymatic activity. The data suggest that quantitative variations of ACP1 may influence the clincal mainifestations of diabetic disorders, and call for further studies on the role of this enzyme in the modulation of insulin-receptor phosphotyrosine pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boivin, P., and Galand, C., Biochem. biophys. Res. Comm.134 (1986) 557.

    Article  CAS  PubMed  Google Scholar 

  2. Ramponi, G., Manao, G., Camici, G., Cappugi, G., Ruggiero, M., and Bottaro, D. P., FEBS Lett.250 (1989) 469.

    Article  CAS  PubMed  Google Scholar 

  3. Ramponi, G., Ruggiero, M., Raugei, G., Berti, A., Modesti, A. A., Degl'Innocenti, D., Magnelli, L., Pazzagli, C., Chiarugi, V. P., and Camici, G., Int. J. Cancer51 (1992) 652.

    Article  CAS  PubMed  Google Scholar 

  4. Wo, Y. P., McCormack, A. L., Shabanowitz, J., Hunt, D. F., Davist, J. P., Mitchell, G. L., and Van Etten, R. L., J. biol. Chem.267 (1992) 10856.

    Article  CAS  PubMed  Google Scholar 

  5. Camici, G., Manao, G., Cappugi, G., Modesti, A., Stefani, M., and Ramponi, G., J. biol. Chem.264 (1989) 2560.

    Article  CAS  PubMed  Google Scholar 

  6. Dissing, J., and Svensmark, O., Biochim. biopys. Acta1041 (1990) 232.

    Article  CAS  Google Scholar 

  7. Dissing, J., Johnsen, A. H., and Sensabaugh, G. F., J. biol. Chem.266 (1991) 20619.

    Article  CAS  PubMed  Google Scholar 

  8. Manao, G., Pazzagli, L., Cirri, P., Caselli, A., Camici, G., Cappugi, G., Saeed, A., and Ramponi, G., J. Protein Chem.11 (1992) 333.

    Article  CAS  PubMed  Google Scholar 

  9. Mansfield, E., and Sensabaugh, G. F., In: Brewer, G. F. (ed) The red cell, p. 233. Alan Liss, New York 1978.

    Google Scholar 

  10. Fuchs, K. R., Shekels, L., and Bernlohr, D. A., Biochem. biophys. Res. Comm.189 (1992) 1598.

    Article  CAS  PubMed  Google Scholar 

  11. Vogel, W., Lammers, R., Huang, J., and Ullrich, A., Science259 (1993) 1611.

    Article  CAS  PubMed  Google Scholar 

  12. Spencer, N., Hopkinson, D. A., and Harris, H., Nature, (Lond.)201 (1964) 299.

    Article  CAS  PubMed  Google Scholar 

  13. Dissing, J., Biochem. Genet.25 (1987) 901.

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto, N., and Goldstein, B. J., Biochem. biophys. Res. Comm.188 (1992) 1305.

    Article  CAS  PubMed  Google Scholar 

  15. Saad, M. J. A., Araki, E., Miralpeix, M., Rothenberg, P. L., White, M. F., and Kahn, R., J. clin. Invest.90 (1992) 1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stefani, M., Caselli, A., Bucciantini, M., Pazzagli, L., Dolfi, F., Camici, G., Manao, B., and Ramponi, G., FEBS Lett.326 (1993) 131.

    Article  CAS  PubMed  Google Scholar 

  17. Harris, H., and Hopkinson, D. A., Handbook of enzyme electrophoresis in human genetics. North Holland, Amsterdam 1976.

    Google Scholar 

  18. Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., and Bent, D. H., Statistical Package for the Social Sciences. McGraw-Hill, New York 1975.

    Google Scholar 

  19. Sokal, R. R., and Rohlf, F. J., Biometry. The principles and practice of statistics in biological research, 2nd edn., p. 747. Freeman, New York 1981.

    Google Scholar 

  20. Kahn, C. R., and White, M. F., J. clin. Invest.82 (1988) 1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldstein, B. J., J. cell. Biochemistry48 (1992) 33.

    Article  CAS  Google Scholar 

  22. Fischer, E. H., Charbonneau, H., and Tonks, N. K., Science253 (1991) 401.

    Article  CAS  PubMed  Google Scholar 

  23. Hauguel de Mouzon, S., Peraldi, P., Alengrin, F., and Van Obberghen, E., Endocrinology132 (1993) 67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloria-Bottini, F., Gerlini, G., Lucarini, N. et al. Phosphotyrosine protein phosphatase and diabetic pregnancy: an association between low molecular weight acid phosphatase and degree of glycemic control. Experientia 52, 340–343 (1996). https://doi.org/10.1007/BF01919537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01919537

Key words

Navigation