Skip to main content
Log in

Biological aspects of cytosine methylation in eukaryotic cells

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The existence in eukaryotes of a fifth base, 5-methylcytosine, and of tissue-specific methylation patterns have been known for many years, but except for a general association with inactive genes and chromatin the exact function of this DNA modification has remained elusive. The different hypotheses regarding the role of DNA methylation in regulation of gene expression, chromatin structure, development, and diseases, including cancer are summarized, and the experimental evidence for them is discussed. Structural and functional properties of the eukaryotic DNA cytosine methyltransferase are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac:

activator

CRE:

cAMP-responsive element

CREB protein:

cAMP-responsive element binding protein

EC cells:

embryocarcinoma cells

HIV:

human immunodeficiency virus

IGF-II:

insulin-like growth factor II

LTR:

long terminal repeat

5-mC:

5-methyl cytosine

MDBP:

methylated DNA-binding protein

MeCP:

methyl-CpG binding protein

MEL cells:

murine erythroleukemia cells

NHP-1:

non-histone protein-1

SDR:

sequence-specificity determining region

TF:

transcription factor

References

  1. Adams, R. L. P., Gardiner, K., Rinaldi, A., Bryans, M., McGarvey, M., and Burdon, R. H., Mouse ascites DNA methylase: characterisation of size, proteolytic breakdown and nucleotide recognition. Biochim. biophys. Acta868 (1986) 9–16.

    Article  CAS  PubMed  Google Scholar 

  2. Adams, R. L. P., Rinaldi, A., McGarvey, M., Bryans, M., and Ball, K., Eukaryotic DNA methyltransferase: tissue and species distribution. Gene74 (1988) 125–128.

    Article  CAS  PubMed  Google Scholar 

  3. Adams, R. L. P., and So, C. L., Methylation of hen erythrocyte DNA. FEBS Lett.246 (1989) 54–56.

    Article  CAS  PubMed  Google Scholar 

  4. Allen, N. D., Norris, M. L., and Surani, M. A., Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell61 (1990) 853–861.

    Article  CAS  PubMed  Google Scholar 

  5. Antequera, F., Tamame, M., Villanueva, J. R., and Santos, T., DNA methylation in the fungi. J. biol. Chem.259 (1984) 8033–8036.

    Article  CAS  PubMed  Google Scholar 

  6. Antequera, F., and Bird, A., Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J.7 (1988) 2295–2299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antequera, F., Macleod, D., and Bird, A., Specific protection of methylated CpGs in mammalian nuclei. Cell58 (1989) 509–517.

    Article  CAS  PubMed  Google Scholar 

  8. Antequera, F., Boyes, J., and Bird, A., High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell62 (1990) 503–514.

    Article  CAS  PubMed  Google Scholar 

  9. Ball, D. J., Gross, D. S., and Garrard, W. T., 5-Methylcytosine is localized in nucleosomes that contain histone H1. Proc. natl Acad. Sci. USA80 (1983) 5490–5494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barlow, D. P., Stöger, R., Herrmann, B. G., Saito, K., and Schweifer, N., The mouse insulin-like growth factor type-2 receptor is imprinted and closely related to the Tme locus. Nature349 (1991) 84–87.

    Article  CAS  PubMed  Google Scholar 

  11. Barr, F. G., Rajagopalan, S., MacArthur, C. A., and Lieberman, M. W., Genomic hypomethylation and far-5′ sequence alterations are associated with carcinogen-induced activation of the hamster thymidine kinase gene. Molec. cell. Biol.6 (1986) 3023–3033.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Becker, P. B., Ruppert, S., and Schütz, G., Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell51 (1987) 435–443.

    Article  CAS  PubMed  Google Scholar 

  13. Bednarik D. P., Cook, J. A., and Pitha, P., Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO J.9 (1990) 1157–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bell, M. V., Hirst, M. C., Nakahori, Y., MacKinnon, R. N., Roche, A., Flint, T. J., Jacobs, P. A., Tommerup, N., Tranebjaerg, L., Froster-Iskenius, U., Kerr, B., Turner, G., Lindenbaum, R. H., Winter, R., Pembrey, M., Thibodeau, S., and Davies, K. E., Physical mapping across the fragile X: Hypermethylation and clinical expression of the fragile X syndrome. Cell64 (1991) 861–866.

    Article  CAS  PubMed  Google Scholar 

  15. Benvenisty, N., Mencher, D., Meyuhas, O., Razin, A., and Reshef, L., Sequential changes in DNA methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development. Proc. natl Acad. Sci.82 (1985), 267–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berg, J. M., Zinc fingers and other metal-binding domains. J. biol. Chem.265 (1990) 6513–6516.

    Article  CAS  PubMed  Google Scholar 

  17. Bernardi, G., The isochore organization of the human genome. A. Rev. Genet.23 (1989) 637–661.

    Article  CAS  Google Scholar 

  18. Besser, D., Götz, F., Schulze-Förster, K., Wagner, H., and Simon, H., DNA methylation inhibits transcription by RNA polymerase III of a tRNA gene, but not of a 5S rRNA gene. FEBS Lett.269 (1990) 358–362.

    Article  CAS  PubMed  Google Scholar 

  19. Bestor, T. H., Supercoiling-dependent sequence specificity of mammalian DNA methyltransferase. Nucl. Acids Res.15 (1987) 3835–3843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bestor, T. H., and Ingram, V. M., Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. natl Acad. Sci.80 (1983) 5559–5563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bestor, T. H., Hellewell, S. B., and Ingram, V. M., Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Molec. cell. Biol.4 (1984) 1800–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bestor, T. H., and Ingram, V. M., Growth-dependent expression of multiple species of DNA methyltransferase in murine erythroleukemia cells. Proc. natl Acad. Sci.82 (1985) 2674–2678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bestor, T. H., Laudano, A., Mattaliano, R., and Ingram, V., Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J. molec. Biol.203 (1988) 971–983.

    Article  CAS  PubMed  Google Scholar 

  24. Bird, A. P., DNA methylation and the frequency of CpG in animal DNA. Nucl. Acids. Res.8 (1980) 1499–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bird, A. P., CpG-rich islands and the function of DNA methylation. Nature321 (1986) 209–213.

    Article  CAS  PubMed  Google Scholar 

  26. Bird, A. P., Taggart, M. H., and Smith, B. A., Methylated and unmethylated DNA compartments in the sea urchin genome. Cell17 (1979) 889–901.

    Article  CAS  PubMed  Google Scholar 

  27. Bird, A. P., and Taggart, M. H., Variable patterns of total DNA and rDNA methylation in animals. Nucl. Acids Res.8 (1980) 1485–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bird, A., Taggart, M., Frommer, M., Miller, O. J., and Macleod, J., A fraction of the mouse genome that is derived from islands of nonmethylated CpG-rich DNA. Cell40 (1985) 91–99.

    Article  CAS  PubMed  Google Scholar 

  29. Bird, A., Taggart, M. H., Nicholls, R., and Higgs, D. R., Nonmethylated CpG-rich islands at the human α-globin locus: implications for evolution of the α-globin pseudogene. EMBO J.6 (1987) 999–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolden, A., Ward, C., Siedlecki, J. A., and Weissbach, A., DNA methylation: Inhibition of de novo and maintenance methylation in vitro by RNA and synthetic polynucleotides. J. biol. Chem.259 (1984) 12437–12443.

    Article  CAS  PubMed  Google Scholar 

  31. Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B., and Schaffner, W., A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell41 (1985) 521–530.

    Article  CAS  PubMed  Google Scholar 

  32. Boye, E., and Löbner-Olesen, A., The role of the dam methyltransferase in the control of DNA replication in E. coli. Cell62 (1990) 981–989.

    Article  CAS  PubMed  Google Scholar 

  33. Boyes, J., and Bird, A., DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell64 (1991) 1123–1134.

    Article  CAS  PubMed  Google Scholar 

  34. Burbelo, P. D., Horikoshi, S., and Yamada, Y., DNA methylation and collagen IV gene expression in F9 teratocarcinoma cells. J. biol. Chem.265 (1990) 4839–4843.

    Article  CAS  PubMed  Google Scholar 

  35. Buschhausen, G., Wittig, B., Graessmann, M., and Graessmann, A., Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. natl Acad. Sci.84 (1987) 1177–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Busslinger, M., Hurst, J., and Flavell, R. A., DNA methylation and the regulation of globin gene expression. Cell34 (1983) 197–206.

    Article  CAS  PubMed  Google Scholar 

  37. Campbell, J. L., and Kleckner, N., E. colioriC and thednaA gene promoter are sequestered fromdam methyltransferase following the passage of the replication fork. Cell62 (1990) 967–979.

    Article  CAS  PubMed  Google Scholar 

  38. Carotti, D., Palitti, F., Lavia, P., and Strom, R., In vitro methylation of CpG-rich islands. Nucl. Acids Res.17 (1989) 9219–9229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cattanach, B. M., and Beechy, C. V., Autosomal and X-chromosome imprinting, in: Genomic Imprinting, pp. 63–72. Eds M. Monk and M. A. Surani. Development 1990 Supplement.

  40. Cedar, H., DNA methylation and gene activity. Cell53 (1988) 3–4.

    Article  CAS  PubMed  Google Scholar 

  41. Cedar, H., and Razin, A., DNA methylation and development. Biochim. biophys. Acta1049 (1990) 1–8.

    Article  CAS  PubMed  Google Scholar 

  42. Chandler, L. A., Ghazi, H., Jones, P. A., Boukamp, P., and Fusenig, N. E., Allele-specific methylation of the human c-Ha-ras-1 gene. Cell50 (1987) 711–717.

    Article  CAS  PubMed  Google Scholar 

  43. Chargaff, E., Lipshitz, R., and Green, C., Composition of the desoxypentose nucleic acids of four genera of sea-urchin. J. biol. Chem.195 (1952) 155–160.

    Article  CAS  PubMed  Google Scholar 

  44. Church, G. M., and Gilbert, W., Genomic sequencing. Proc. natl Acad. Sci. USA81 (1984) 1991–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Comb, M., and Goodman, H. M., CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucl. Acids Res.18 (1990) 3975–3982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coulondre, C., Miller, J. H., Farabaugh, P. J., and Gilbert, W., Molecular basis of base substitution hotspots inEscherichia coli. Nature274 (1978) 775–780.

    Article  CAS  PubMed  Google Scholar 

  47. Dawid, I. B., Deoxyribonucleic acid in amphibian eggs. J. molec. Biol.12 (1962) 581–599.

    Article  Google Scholar 

  48. De Bustros, A., Nelkin, B. D., Silverman, A., Ehrlich, G., Poiesz, B., and Baylin, S. B., The short arm of chromosome 11 is a ‘hot spot’ for hypermethylation in human neoplasia. Proc. natl Acad. Sci. USA85 (1988) 5693–5697.

    Article  PubMed  PubMed Central  Google Scholar 

  49. DeChiara, T. M., Robertson, E. J., and Efstratiadis, A., Parental imprinting of the mouse insulin-like growth factor II gene. Cell64 (1991) 849–859.

    Article  CAS  PubMed  Google Scholar 

  50. Dellaporta, S. L., Chomet, P. S., Mottinger, J. P., Wood, J. A., Yu, S.-M., and Hicks, J. B., Endogenous transposable elements associated with virus infection in maize. Cold Spring Harbor Symp. quant. Biol.49 (1984) 321–328.

    Article  CAS  PubMed  Google Scholar 

  51. Deobagkar, D. D., Liebler, M., Graessmann, M., and Graessmann, A., Hemimethylation of DNA prevents chromatin expression. Proc. natl Acad. Sci.87 (1990) 1691–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Drahovsky, D. and Morris, N. R., Mechanism of action of rat liver DNA methylase. I. Interaction with double-stranded methyl-acceptor DNA. J. molec. Biol.57 (1971) 475–489.

    Article  CAS  PubMed  Google Scholar 

  53. Drahovsky, D., and Pfeifer, G. P., Enzymology of DNA methylation in mammalian cells, in: Architecture of Eukaryotic Genes, pp. 435–445. Ed. G. Kahl. VCH, Weinheim 1988.

    Google Scholar 

  54. Driscoll, D. J., and Migeon, B. R., Sex differences in methylation of single-copy genes in human meiotic germ cells: implications for X chromosome inactivation, parental imprinting, and origin of CpG mutations. Som. Cell. Genet.16 (1990) 267–282.

    Article  CAS  Google Scholar 

  55. Dryja, T. P., Mukai, S., Petersen, R., Rapaport, J. M., Walton, D., and Yandell, D. W., Parental origin of mutations of the retinoblastoma gene. Nature339 (1989) 556–558.

    Article  CAS  PubMed  Google Scholar 

  56. Ehrlich, M., Gama-Sosa, M. A., Huang, L., Midgett, R. M., Kuo, K. C., McCune, R. A., and Gehrke, C., Amount and distribution of 5-methyl-cytosine in human DNA from different types of tissues or cells. Nucl. Acids Res.10 (1982) 2709–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Enver, T., Zhang, J., Papayannopoulou, T., and Stamatoyannopoulos, G., DNA methylation: a secondary event in globin gene switching? Genes Devl.2 (1988) 698–706.

    Article  CAS  Google Scholar 

  58. Falzon, M., and Kuff, E. L., Binding of the transcription factor EBP-80 mediates the methylation response of an intracisternal Aparticle long terminal repeat promoter. Molec. cell. Biol.11 (1991) 117–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fearon, E. R., and Vogelstein, B., A genetic model for colorectal tumorigenesis. Cell61 (1990) 759–767.

    Article  CAS  PubMed  Google Scholar 

  60. Feinberg, A. P., and Vogelstein, B., Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301 (1983) 89–92.

    Article  CAS  PubMed  Google Scholar 

  61. Frank, D., Lichtenstein, M., Paroush, Z., Bergman, Y., Shani, M., Razin, A., and Cedar, H., Demethylation of CpG islands in embryonic cells. Phil. Trans. R. Soc. Lond. B326 (1990) 241–251.

    CAS  Google Scholar 

  62. Gama-Sosa, M. A., Midgett, R. M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C., and Ehrlich, M., Tissue-specific differences in DNA methylation in various mammals. Biochim. biophys. Acta740 (1983) 212–219.

    Article  CAS  PubMed  Google Scholar 

  63. Gama-Sosa, M. A., Wang, R. Y.-H., Kuo, K. C., Gehrke, C., and Ehrlich, M., The 5-methylcytosine content of highly repeated sequences in human DNA. Nucl. Acids Res.11 (1983) 3087–3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gama-Sosa, M. A., Trewyn, R. W., Oxenhandler, R., Kuo, K. C., Gehrke, C., and Ehrlich, M., The 5-methylcytosine content of DNA from human tumors. Nucl. Acids Res.11 (1983) 6883–6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gardiner-Garden, M., and Frommer, M., CpG islands in vertebrate genomes. J. molec. Biol.196 (1987) 261–282.

    Article  CAS  PubMed  Google Scholar 

  66. Gautsch, W. J., and Wilson, M. C., Delayed de novo methylation in teratocarcinoma suggests additional tissue-specific mechanisms for controlling gene expression. Nature301 (1983) 32–37.

    Article  CAS  PubMed  Google Scholar 

  67. Gerber-Huber, S., May, F. E. B., Westley, B. R., Felber, B. K., Hosbach, H. A., Andres, A.-C., and Ryffel, G. U., In contrast to other Xenopus genes the estrogen-inducible vitellogenin genes are expressed when totally methylated. Cell33 (1983) 43–51.

    Article  CAS  PubMed  Google Scholar 

  68. Ghazi, H., Magewu, A. N., Gonzales, F., and Jones, P. A., Changes in the allelic methylation patterns of c-H-ras-1, insulin and retinoblastoma genes in human development, in: Genomic Imprinting, pp. 115–124. Eds M. Monk and M. A. Surani. Development 1990 Supplement.

  69. Gierl, A., Lütticke, S., and Saedler, H., TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J.7 (1988) 4045–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goelz, S. E., Vogelstein, B., Hamilton, S. R., and Feinberg, A. P., Hypomethylation of DNA from benign and malignant human colon neoplasms. Science228 (1985) 187–190.

    Article  CAS  PubMed  Google Scholar 

  71. Gönczy, P., Reith, W., Barras, E., Lisowska-Grospierre, B., Griscelli, C., Hadam, M. R., and Mach, B., Inherited immunodeficiency with a defect in a major histocompatibility complex class II promoter-binding protein differs in the chromatin structure of the HLA-DRA gene. Molec. cell. Biol.9 (1989) 296–302.

    PubMed  PubMed Central  Google Scholar 

  72. Grant, S. G., and Chapman, V. M., Mechanism of X-chromosome regulation. A. Rev. Genet.22 (1988) 199–233.

    Article  CAS  Google Scholar 

  73. Green, P. M., Montandon, A. J., Bentley, D. R., Ljung, R., Nilsson, I. M., and Giannelli, F., The incidence and distribution of CpG-TpG transitions in the coagulation factor IX gene. A fresh look at CpG mutational hotspots. Nucl. Acids Res.18 (1990) 3227–3231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gross, D. S., and Garrard, W. T., Nuclease hypersensitive sites in chromatin. A. Rev. Biochem.57 (1988) 159–197.

    Article  CAS  Google Scholar 

  75. Groudine, M., and Conkin, K. F., Chromatin structure and de novo methylation of sperm DNA: implications for activation of the paternal genome. Science228 (1985) 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  76. Gruenbaum, Y., Naveh-Many, T., Cedar, H., and Razin, A., Sequence specificity of methylation in higher plant DNA. Nature292 (1981) 860–862.

    Article  CAS  PubMed  Google Scholar 

  77. Gruenbaum, Y., Cedar, H., and Razin, A., Substrate and sequence specificity of a eukaryotic DNA methylase. Nature295 (1982) 620–622.

    Article  CAS  PubMed  Google Scholar 

  78. Gruenbaum, Y., Szyf, M., Cedar, H., and Razin, A., Methylation of replicating and post-replicated mouse L-cell DNA. Proc. natl Acad. Sci. USA80 (1983) 4919–4921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hall, J. G., How imprinting is relevant to human disease, in: Genomic Imprinting, pp. 141–149. Eds M. Monk and M. A. Surani. Development 1990 Supplement.

  80. Harrington, M. A., Jones, P. A., Imagawa, M., and Karin, M., Cytosine methylation does not affect binding of transcription factor Sp1. Proc. natl Acad. Sci. USA85 (1988) 2066–2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Heitz, D., Rousseau, F., Devys, D., Saccone, S., Abderrahim, H., Le Paslier, D., Cohen, D., Vincent, A., Toniolo, D., Della Valle, G., Johnson, S., Schlessinger, D., Oberlé, I., and Mandel, J. L., Isolation of sequences that span the fragile X and identification of a fragile X-related CpG island. Science251 (1991) 1236–1239.

    Article  CAS  PubMed  Google Scholar 

  82. Hermann, R., and Doerfler, W., Interference with protein binding at AP2 sites by sequence-specific methylation in the late E2A promoter of adenovirus type 2 DNA. FEBS Lett.281 (1991) 191–195.

    Article  CAS  PubMed  Google Scholar 

  83. Hitt, M. M., Wu, T. L., Cohen, G., and Linn, S.,De novo and maintenance DNA methylation by a mouse plasmacytoma cell DNA methyltransferase. J. biol. Chem.263 (1988) 4392–4399.

    Article  CAS  PubMed  Google Scholar 

  84. Ho, L., Bohr, V. A., and Hanawalt, P. C., Demethylation enhances removal of pyrimidine dimers from the overall genome and from specific DNA sequences in Chinese hamster ovary cells. Molec. cell. Biol.9 (1989) 1594–1603.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Höller, M., Westin, G., Jiricny, J., and Schaffner, W., Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Devl.2 (1988) 1127–1135.

    Article  Google Scholar 

  86. Holliday, R., The inheritance of epigenetic defects. Science238 (1987) 163–170.

    Article  CAS  PubMed  Google Scholar 

  87. Holliday, R., Monk, M., and Pugh, J. E. (eds), DNA Methylation and Gene Regulation. The Royal Society 1990.

  88. Hsiao, W. W., Gattoni-Celli, S., Kirschmeier, P., and Weinstein, I. B., Effects of 5-azacytidine on methylation and expression of specific DNA sequences in C3H 10T1/2 cells. Molec. cell. Biol.4 (1984) 634–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, L.-H., Wang, R., Gama-Sosa, M. A., Shenoy, S., and Ehrlich, M., A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA. Nature308 (1984) 293–295.

    Article  CAS  PubMed  Google Scholar 

  90. Hubrich-Kühner, K., Buhk, H.-J., Wagner, H., Kröger, H., and Simon, D., Non-C-G recognition sequences of DNA cytosine-5-methyltransferase from rat liver. Biochem. biophys. Res. Commun.160 (1989) 1175–1182.

    Article  PubMed  Google Scholar 

  91. Hughes, M. J., Liang, H., Jiricny J., and Jost, J.-P., Purification and characterization of a protein from HeLa cells that binds with high affinity to the estrogen response element, GGTCAGCGTGACC. Biochemistry28 (1989) 9137–9142.

    Article  CAS  PubMed  Google Scholar 

  92. Iguchi-Ariga, S. M. M., and Schaffner, W., CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Devl.3 (1989) 612–619.

    Article  CAS  Google Scholar 

  93. Ip, Y. T., Granner, D. K., and Chalkley, R., Hormonal induction of phosphoenolpyruvate carboxykinase gene expression is mediated through modulation of an already disrupted chromatin structure. Molec. cell. Biol.9 (1989) 1289–1297.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jablonka, E., Goitein, R., Marcus, M., and Cedar, H., DNA hypomethylation causes an increase in DNase-I sensitivity and an advance in the time of replication of the entire inactive X chromosome. Chromosoma93 (1985) 152–156.

    Article  CAS  PubMed  Google Scholar 

  95. Jadayel, D., Fain, P., Upadhyaya, M., Ponder, M. A., Huson, S. M., Carey, J., Fryer, A., Mathew, C. G. P., Barker, D. F., and Ponder, B. A. J., Paternal origin of new mutations in von Recklinghausen neurofibromatosis. Nature343 (1990) 558–559.

    Article  CAS  PubMed  Google Scholar 

  96. Jaenisch, R., and Jähner, D., Methylation, expression and chromosomal position of genes in mammals. Biochim. biophys. Acta782 (1984) 1–9.

    Article  CAS  PubMed  Google Scholar 

  97. Jones, P. A., Altering gene expression with 5-azacytidine. Cell40 (1985) 485–486.

    Article  CAS  PubMed  Google Scholar 

  98. Jones, P. A., Wolkowicz, M. J., Rideout III, W. M., Gonzales, F. A., Marziasz, C. M., Coetzee, G. A., and Tapscott, S. J.,De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc. natl Acad. Sci. USA,87 (1990) 6117–6121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jongstra, J., Reudelhuber, T. L., Oudet, P., Benoist, C., Chae, C.-B., Jeltsch, J.-M., Mathis, D., and Chambon, P., Induction of altered chromatin structures by simian virus 40 enhancer and promoter elements. Nature307 (1984) 708–714.

    Article  CAS  PubMed  Google Scholar 

  100. Jüttermann, R., Hosokawa, K., Kochanek, S., and Doerfler, W., Adenovirus type 2 VAI RNA transcription by polymerase III is blocked by sequence-specific methylation. J. Virol.65 (1991) 1735–1742.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kageyama, R., Merlino, G. T., and Pastan, I., Nuclear factor ETF specifically stimulates transcription from promoters without a TATA box. J. biol. Chem.264 (1989) 15508–15514.

    Article  CAS  PubMed  Google Scholar 

  102. Kageyama, R., and Pastan, I., Molecular cloning and characterization of a human DNA binding factor that represses transcription. Cell59 (1989) 815–825.

    Article  CAS  PubMed  Google Scholar 

  103. Kastan, M. B., Gowans, B. J., and Lieberman, M. W., Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA. Cell30 (1982) 509–516.

    Article  CAS  PubMed  Google Scholar 

  104. Kautiainen, T. L., and Jones, P. A., DNA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J. biol. Chem.261 (1986) 1594–1598.

    Article  CAS  PubMed  Google Scholar 

  105. Kelley, D. E., Pollak, B. A., Atchison, M., and Perry, R. P., The coupling between enhancer activity and hypomethylation of κ immunoglobulin genes is developmentally regulated. Molec. cell. Biol.8 (1988) 930–937.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Keshet, I., Liemann-Hurwitz, J., and Cedar, H., DNA methylation affects the formation of active chromatin. Cell44 (1986) 535–543.

    Article  CAS  PubMed  Google Scholar 

  107. Knebel-Mörsdorf, D., Achten, S., Langner, K.-D., Rüger, R., Fleckenstein, B., and Dörfler, W., Reactivation of the methylation-inhibited late E2A promoter of adenovirus type 2 by a strong enhancer of human cytomegalovirus. Virology166 (1988) 166–174.

    Article  PubMed  Google Scholar 

  108. Kolsto, A.-B., Kollias, G., Giguere, V., Isobe, K.-I., Prydz, H., and Grosveld, F., The maintenance of methylation-free islands in transgenic mice. Nucl. Acids Res.14 (1986) 9667–9678.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kovesdi, I., Reichel, R., and Nevins, J. R., Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. Proc. natl Acad. Sci.84 (1987) 2180–2184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kunze, R., and Starlinger, P., The putative transposase of transposable element Ac fromZea mays L. interacts with subterminal sequences of Ac. EMBO J.8 (1989) 3177–3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lamson, G., and Stockdale, F. E., Developmental and musclespecific changes in methylation of the myosin light chain LV1f and LC3f promoters during avian myogenesis. Devl. Biol.132 (1989) 62–68.

    Article  CAS  Google Scholar 

  112. Landousi, A., Malki, A., Kern, R., Kohiyama, M., and Hughes, P., TheE. coli surface specifically prevents the initiation of DNA replication at oriC on hemimethylated DNA templates. Cell63 (1990) 1053–1060.

    Article  Google Scholar 

  113. Lieberman, M. W., Beach, L. R., and Palmiter, R. D., Ultraviolet radiation-induced metallothionein-I gene activation is associated with extensive DNA demethylation. Cell35 (1983) 207–214.

    Article  CAS  PubMed  Google Scholar 

  114. Lock, L. F., Takagi, N., and Martin, G. R., Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell48 (1987) 39–46.

    Article  CAS  PubMed  Google Scholar 

  115. Lyon, S. B., Buonocore, L., and Miller, M., Naturally occurring methylation inhibitor: DNA hypomethylation and hemoglobin synthesis in human K562 cells. Molec. cell. Biol.7 (1987) 1759–1763.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. McCarthy, J., The evolution of base sequences in polynucleotides. Prog. nucl. Acid Res. molec. Biol.4 (1965) 129–160.

    Article  CAS  Google Scholar 

  117. McClelland, M., and Nelson, M., The effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases a review. Gene74 (1988) 291–304.

    Article  CAS  PubMed  Google Scholar 

  118. McClintock, B., The significance of responses of the genome to challenge. Science226 (1984) 792–801.

    Article  CAS  PubMed  Google Scholar 

  119. McGowan, R., Campbell, R., Peterson, A., and Sapienza, C., Cellular mosaicism in the methylation and expression of hemizygous loci in the mouse. Genes Devl.3 (1989) 1669–1676.

    Article  CAS  Google Scholar 

  120. Macleod, D., and Bird, A., Transcription in oocytes of highly methylated rDNA fromXenopus laevis sperm. Nature306 (1984) 200–203.

    Article  Google Scholar 

  121. Magenis, E. R., Toth-Fejel, S., Allen, L. J., Black, M., Brown, M. G., Budden, S., Cohen, R., Friedman, J. M., Kalousek, D., Zonana, J., Lacey, D., LaFranchi, S., Lahr, M., MacFarlane, J., and Williams, C. P. S., Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am. J. Hum. Genetics35 (1990) 333–349.

    CAS  Google Scholar 

  122. Martienssen, R., Barkan, A., Taylor, W. C., and Freeling, M., Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Devl.4 (1990) 331–343.

    Article  CAS  Google Scholar 

  123. Mays-Hoopes, L. L., Age-related changes in DNA methylation: do they represent continued developmental changes? Int. Rev. Cytol.114 (1989) 181–220.

    Article  CAS  PubMed  Google Scholar 

  124. Means, A. L., and Farnham, P. J., Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site. Molec. cell. Biol.10 (1990) 653–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Meehan, R. R., Lewis, J. D., McKay, S., Kleiner, E. L., and Bird, A., Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell58 (1989) 499–507.

    Article  CAS  PubMed  Google Scholar 

  126. Mehtali, M., LeMeur, M., and Lathe, R., The methylation-free status of a housekeeping transgene is lost at high copy number. Gene91 (1990) 179–184.

    Article  CAS  PubMed  Google Scholar 

  127. Migeon, B. R., Axelman, J., and Beggs, A. H., Effect of ageing on reactivation of the human X-linked HPRT locus. Nature335 (1988) 93–96.

    Article  CAS  PubMed  Google Scholar 

  128. Milici, A., Salbaum, J. M., and Beyreuther, K., Study of the Alzheimer's A4 precursor gene promoter region by genomic sequencing using Taq polymerase. Biochem. biophys. Res. Commun.169 (1990) 46–50.

    Article  CAS  PubMed  Google Scholar 

  129. Mitchell, P. J., and Tjian, R., Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science245 (1989) 371–378.

    Article  CAS  PubMed  Google Scholar 

  130. Monk, M., Boubelik, M., and Lehnert, S., Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development99 (1987) 371–382.

    Article  CAS  PubMed  Google Scholar 

  131. Monk, M., Changes in DNA methylation during mouse development in relation to X-chromosome activity and imprinting. Phil. Trans. R. Soc. Lond. B326 (1990) 299–312.

    Article  CAS  Google Scholar 

  132. Monk, M., and Surani, M. A., (eds), Genomic Imprinting. Development 1990 Supplement.

  133. Murray, E., and Grosveld, F., Site specific demethylation in the promoter of human γ-globin gene does not alleviate methylation mediated suppression. EMBO6 (1987) 2329–2335.

    Article  CAS  Google Scholar 

  134. Nagl, W., Zellkern und Zellzyklen, p. 16. Verlag Eugen Ulmer, Stuttgart 1976.

    Google Scholar 

  135. Naveh-Maneh, T., and Cedar, H., Topographical distribution of 5-methylcytosine in animal and plant DNA. Molec. cell. Biol.2 (1982) 758–762.

    Google Scholar 

  136. Nick, H., Bowen, B., Ferl, R. J., and Gilbert, W., Detection of cytosine methylation in the maize alcohol dehydrogenase gene by genomic sequencing. Nature319 (1986) 243–246.

    Article  CAS  Google Scholar 

  137. Noguchi, H., Prem veer Reddy, G., and Pardee, A. B., Rapid incorporation of label from ribonucleoside diphosphates into DNA by a cell-free high molecular weight fraction from animal cell nuclei. Cell32 (1983) 443–451.

    Article  CAS  PubMed  Google Scholar 

  138. Ott, M., Sperling, L., Cassio, D., Levilliers, J., Sala-Trepat, J., and Weiss, M. C., Undermethylation at the 5′ end of the albumin gene is necessary but not sufficient for albumin production by rat hepatoma cells in culture. Cell30 (1982) 825–833.

    Article  CAS  PubMed  Google Scholar 

  139. Pagani, F., Toniolo, D., and Vergani, C., Stability of DNA methylation of X-chromosome genes during aging. Somat. cell. molec. Genet.16 (1990) 79–84.

    Article  CAS  PubMed  Google Scholar 

  140. Palmgren, G., Mattsson, O., and Okkels, F. T., Employment of hydrolytic enzymes in the study of the level of DNA methylation. Biochim. biophys. Acta1049 (1990) 293–297.

    Article  CAS  PubMed  Google Scholar 

  141. Paroush, Z., Keshet, I., Yisraeli, J., and Cedar, H., Dynamics of demethylation and activation of the a-catin gene in myoblasts. Cell63 (1990) 1229–1237.

    Article  CAS  PubMed  Google Scholar 

  142. Pawlak, A., Bryans, M., and Jost, J.-P., An avian 40 kDa nucleoprotein binds preferentially to a promoter sequence containing one single pair of methylated CpG. Nucl. Acids Res.19 (1991) 1029–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Peschke, V. M., Phillips, R. L., and Gengenbach, B. G., Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science238 (1987) 804–807.

    Article  CAS  PubMed  Google Scholar 

  144. Pfeifer, G. P., Grünwald, S., Boehm, T. L. J., and Drahovsky, D., Isolation and characterisation of DNA-cytosine-5-methyltransferase from human placenta. Biochim. biophys. Acta740 (1983) 323–330.

    Article  CAS  PubMed  Google Scholar 

  145. Pfeifer, G. P., Spiess, E., Grünwald, S., Boehm, T. L. J., and Drahovsky, D., Mouse DNA-cytosine-5-methyltransferase: sequence specificity of the methylation reaction and electron microscopy of enzyme-DNA complexes. EMBO J.4 (1985) 2879–2884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pfeifer, G. P., Grünwald, S., Palitti, F., Kaul, S., Boehm, T. L. J., Hirth, H.-P., and Drahovsky, D., Purification and characterization of mammalian DNA methyltransferase by use of monoclonal antibodies. J. biol. Chem.260 (1985) 13787–13793.

    Article  CAS  PubMed  Google Scholar 

  147. Pfeifer, G. P., and Drahovsky, D., DNA methyltransferase polypeptides in mouse and human cells. Biochim. biophys. Acta868 (1986) 238–242.

    Article  CAS  PubMed  Google Scholar 

  148. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D., Genomic sequencing and methylation analysis by ligation mediated PCR. Science246 (1989) 810–813.

    Article  CAS  PubMed  Google Scholar 

  149. Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D., and Riggs, A. D., In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Devl.4 (1990) 1277–1287.

    Article  CAS  Google Scholar 

  150. Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M., and Riggs, A. D., Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. natl Acad. Sci. USA87 (1990) 8253–8256.

    Article  Google Scholar 

  151. Pösfai, J., Bhagwat, A. S., Posfai, G., and Roberts, R. J., Predictive motifs derived from cytosine methyltransferases. Nucl. Acids Res.17 (1989) 2421–2435.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Poethig, R. S., Phase change and the regulation of shoot morphogenesis in plants. Science250 (1990) 923–930.

    Article  CAS  PubMed  Google Scholar 

  153. Prendergast, G. C., and Ziff, E. B., Methylation-sensitive sequencespecific DNA binding by the c-myc basic region. Science251 (1991) 186–189.

    Article  CAS  PubMed  Google Scholar 

  154. Profitt, J. H., Davie, J. R., Swinton, D., and Hattman, S., 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Molec. cell. Biol.4 (1984) 985–988.

    Google Scholar 

  155. Quigley, F., Brinkmann, H., Martin, W. F., and Cerff, R., Strong functional GC pressure in a light-regulated maize gene encoding subunit GAPA of chloroplast glyceraldehyde-3-phosphate dehydrogenase: implications for the evolution of GAPA pseudogenes. J. molec. Evol.29 (1989) 412–421.

    Article  CAS  PubMed  Google Scholar 

  156. Razin, A., DNA methylases, in: Genetic Engineering 11, pp. 1–12. Ed. J. Setlow. Plenum Press, New York 1988.

    Google Scholar 

  157. Razin, A., and Szyf, M., DNA methylation patterns. Formation and function. Biochim. biophys. Acta782 (1984) 331–342.

    Article  CAS  PubMed  Google Scholar 

  158. Razin, A., Webb, C., Szyf, M., Yisraeli, J., Rosenthal, A., Naveh-Many, T. Sciaky-Gallili, N., and Cedar, H., Variations in DNA methylation during mouse cell differentiation in vivo and in vitro. Proc. natl Acad. Sci.81 (1984) 2275–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Razin, A., Szyf, M., Kafri, T., Roll, H., Scarpa, S., Carotti, D., and Cantoni, G., Replacement of 5-methylcytosine by cytosine: A possible mechanism for transient DNA demethylation during differentiation. Proc. natl Acad. Sci.83 (1986) 2827–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Razin, A., Levine, A., kafri, T., Agostini, S., Gomi, T., and Cantoni, G. L., Relationship between transient DNA hypomethylation and erythroid differentiation of murine erythroleukemia cells. Proc. natl Acad. Sci.85 (1988) 9003–9006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rees, H., and Jones, R. N., The origin of the wide species variation in nuclear DNA content. Int. Rev. Cytol.32 (1972) 53–92.

    Article  CAS  PubMed  Google Scholar 

  162. Reik, W., Genomic imprinting and genetic disorders in man. Trends Genet.5 (1989) 331–336.

    Article  CAS  PubMed  Google Scholar 

  163. Reik, W., and Surani, M. A., Cancer genetics: genomic imprinting and embryonal tumours. Nature338 (1989) 112–113.

    Article  CAS  PubMed  Google Scholar 

  164. Reik, W., Howlett, S. K., and Surani, M. A., Imprinting by DNA methylation: from transgenes to endogenous gene sequences, in: Genomic Imprinting, pp. 99–106. Eds M. Monk and M. A. Surani. Development 1990 Supplement.

  165. Rideout III, W. M., Coetzee, G. A., Olumi, A. F., and Jones, P. A., 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science249 (1990) 1288–1290.

    Article  CAS  PubMed  Google Scholar 

  166. Rothnie, H. M., McCurrach, K. J., Glover, L. A., and Hardman, N., Retrotransposon-like nature of Tp1 elements: implications for the organisation of highly repetitive, hypermethylated DNA in the genome ofPhysarum polycephalum. Nucl. Acids Res.19 (1991) 279–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Russell, P. J., Rodland, K. D., Rachlin, E. M., and McCloskey, J. A., Differential DNA methylation during the vegetative life cycle ofNeurospora crassa. J. Bact.169 (1987) 2902–2905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Saluz, H. P., Jiricny, J., and Jost, J. P., Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc. natl Acad. Sci. USA83 (1986) 7167–7171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Saluz, H. P., Feavers, I. M., Jiricny, J., and Jost, J. P., Genomic sequencing and in vivo footprinting of an expression-specific DNAse I-hypersensitive site of avian vitellogenin II promoter reveal a demethylation of a mCpG and a change in specific interactions of proteins with DNA. Proc. natl Acad. Sci. USA85 (1988) 6697–6700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sanford, J. P., Chapman, V. M., and Rossant, J., DNA methylation in extraembryonic lineages of mammals. Trends Genet.1 (1985) 89–93.

    Article  CAS  Google Scholar 

  171. Sanford, J. P., Clark, H. J., Chapman, V. M., and Rossant, J., Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse. Genes Devl1 (1987) 1039–1046.

    Article  CAS  Google Scholar 

  172. Santi, D. V., Garrett, C. E., and Barr, P. J., On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell33 (1983) 9–10.

    Article  CAS  PubMed  Google Scholar 

  173. Sapienza, C., Paquette, J., Tran, T. H., and Peterson, A., Epigenetic and genetic factors affect transgene methylation imprinting. Development107 (1989) 165–168.

    Article  CAS  PubMed  Google Scholar 

  174. Sasaki, H., Hamada, T., Ueda, T., Seki, R., Higashinakagawa, T., and Sakaki, Y., Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting. Development111 (1991) 573–581.

    Article  CAS  PubMed  Google Scholar 

  175. Schulze-Forster, K., Götz, F., Wagner, H., Kröger, H., and Simon, D., Transcription of HIV1 is inhibited by DNA methylation. Biophys. biochem. Res. Comm.168 (1990) 141–147.

    Article  CAS  Google Scholar 

  176. Selig, S., Ariel, M., and Cedar, H., Regulation of mouse satellite DNA replication time. EMBO J.7 (1988) 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Selker, E. U., Premeiotic instability of repeated sequences inNeurospora crassa. A. Rev. Genetics24 (1990) 579–613.

    Article  CAS  Google Scholar 

  178. Shen, E. S., and Whitlock, J. P., The potential role of DNA methylation in the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. biol. Chem.264 (1989) 17754–17758.

    Article  CAS  PubMed  Google Scholar 

  179. Shimada, T., Inokuchi, K., and Nienhuis, A. W., Site-specific demethylation and normal chromatin structure of the human dihydrofolate reductase gene promoter after transfection into CHO cells. Molec. cell. Biol.7 (1987) 2830–2837.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Shpaer, E. G., and Mullins, J. I., Selection against CpG nucleotides in lentiviral genes: a possible role of methylation in regulation of viral expression. Nucl. Acids. Res.18 (1990) 5793–5797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Silva, A. J., and White, R., Inheritance of allelic blueprints for methylation patterns. Cell54 (1988), 145–152.

    Article  CAS  PubMed  Google Scholar 

  182. Simon, D., Grunert, F., v. Acken, U., Döring, H. P., and Kröger, H., DNA-methylase from regenerating rat liver: purification and characterization. Nucl. Acids Res.5 (1978) 2153–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Singh, P. B., Miller, J. R., Pearce, J., Kothary, R., Burton, R. D., Paro, R., James, T. C., and Gaunt, S. J., A sequence motif found in aDrosophila heterochromatin protein is conserved in animals and plants. Nucl. Acids Res.19 (1991) 789–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Solter, D., Differential imprinting and expression of maternal and paternal genomes. A. Rev. Genetics22 (1988) 127–146.

    Article  CAS  Google Scholar 

  185. Spiess, E., Tomassetti, A., Hernaiz-Driever, P., and Pfeifer, G. P., Structure of mouse DNA (cytosine-5-)-methyltransferase. Eur. J. Biochem.177 (1988) 29–34.

    Article  CAS  PubMed  Google Scholar 

  186. Staiger, D., Kaulen, H., and Schell, J., A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc. natl Acad. Sci.86 (1989) 6930–6934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Stein, B., Rahmsdorf, H. J., Steffen, A., Litfin, M., and Herrlich, P., UV-induced DNA damage is an intermediate step in the UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein. Molec. cell. Biol.9 (1989) 5169–5181.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Sullivan, C. H., and Grainger, R. M., δ-crystallin genes become hypomethylated in postmitotic lens cells during chicken development. Proc. natl Acad. Sci. USA83 (1986) 329–333.

    Google Scholar 

  189. Surani, M. A., Kothary, R., Allen, N. D., Singh, P. B., Fundele, R., Ferguson-Smith, A. C., and Barton, S. C., Genome imprinting and development in the mouse, in: Genomic Imprinting, pp. 89–99. Eds M. Monk and M. A. Surani. Development 1990 Supplement.

  190. Swain, J. L., Stewart, T. A., and Leder, P., Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell50 (1987) 719–727.

    Article  CAS  PubMed  Google Scholar 

  191. Szyf, M., Avraham-Haetzni, K., Reifman, A., Shlomai, J., Kaplan, F., Oppenheim, A., and Razin, A., DNA methylation is determined by the intracellular level of the methylase. Proc. natl Acad. Sci. USA81 (1984) 3278–3282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Szyf, M., Eliasson, L., Mann, V., Klein, G., and Razin, A., Cellular and viral DNA hypomethylation associated with induction of Epstein-Barr virus lytic cycle. Proc. natl Acad. Sci. USA82 (1985) 8090–8094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Szyf, M., Tanigawa, G., and McCarthy, P. L. Jr., A DNA signal from the Thy-1 gene defines de novo methylation patterns in embryonic stem cells. Molec. cell. Biol.10 (1990) 4396–4400.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Tazi, J., and Bird, A., Alternative chromatin structure at CpG islands. Cell60 (1990) 909–920.

    Article  CAS  PubMed  Google Scholar 

  195. Tomassetti, A., Driever, P. H., Pfeifer, G. P., and Drahovsky, D., Isolation and characterization of proteins that stimulate the activity of mammalian DNA methyltransferase. Biochim. biophys. Acta951 (1988) 201–212.

    Article  CAS  PubMed  Google Scholar 

  196. Toth, M., Müller, U., and Doerfler, W., Establishment ofde novo DNA methylation patterns. Transcription factor binding and deoxycytidine methylation at CpG and non-CpG sequences in an integrated adenovirus promoter. J. molec. Biol.214 (1990) 673–683.

    Article  CAS  PubMed  Google Scholar 

  197. Urieli-Shoval, S., Gruenbaum, Y., Sedat, J., and Razin, A., The absence of detectable methylated bases inDrosophila melanogaster DNA. FEBS Lett.146 (1981) 148–152.

    Article  Google Scholar 

  198. Valerie, K., and Rosenberg, M., Chromatin structure implicated in activation of HIV-1 gene expression by ultraviolet light. The New Biologist2 (1990) 712–718.

    CAS  PubMed  Google Scholar 

  199. Vanyushin, B. F., Tkacheva, S. G., and Belozersky, A. N., Rare bases in animal DNA. Nature225 (1970) 948–949.

    Article  CAS  PubMed  Google Scholar 

  200. Vincent, A., Heitz, D., Petit, C., Kretz, C., Oberlé, I., and Mandel, J.-L., Abnormal pattern detected in fragile-X patients by pulsed-field gel electrophoresis. Nature349 (1991) 624–626.

    Article  CAS  PubMed  Google Scholar 

  201. Waalwijk, C., and Flavell, R. A., MspI, an isoschizomer of HpaII which cleaves both unmethylated and methylated HpaII sites. Nucl. Acids Res.5 (1978) 3231–3236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Walbot, V., Reactivation of the Mutator transposable element system following gamma irradiation of seed. Molec. gen. Genet.212 (1988) 259–264.

    Article  CAS  Google Scholar 

  203. Walter, J., Noyer-Weidner, M., and Trautner, T. A., The amino acid sequence of the CCGG recognizing DNA methyltransferase M. Bsu-FI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J.9 (1990) 1007–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wareham, K. A., Lyon, M. F., Glenister, P. H., and Williams, E. D., Age related reactivation of an X-linked gene. Nature327 (1987) 725–727.

    Article  CAS  PubMed  Google Scholar 

  205. Watt, F., and Molloy, P. L., Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Devl.2 (1988) 1136–1143.

    Article  CAS  Google Scholar 

  206. Weil, C. F., and Wessler, S. R., The effects of plant transposable element insertion on transcription initiation and RNA processing. A. Rev. Plant Physiol. Plant molec. Biol.41 (1990) 520–552.

    Google Scholar 

  207. Weisshaar, B., Langner, K.-D., Jüttermann, R., Müller, U., Zock, C., Klimkait, T., and Doerfler, W., Reactivation of the methylation inactivated late E2A promoter of adenovirus type 2 by E1A (13S) functions. J. molec. Biol.202 (1988) 255–270.

    Article  CAS  PubMed  Google Scholar 

  208. Wiebauer, K., and Jiricny, J., In vitro correction of G·T mispairs to G·C pairs in nuclear extracts from human cells. Nature339 (1989) 234–236.

    Article  CAS  PubMed  Google Scholar 

  209. Wiebauer, K., and Jiricny, J., Mismatch-specific thymine DNA glycosylase and DNA polymerase β mediate the correction of G·T mispairs in nuclear extracts from human cells. Proc. natl Acad. Sci.87 (1990) 5842–5845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wilke, K., Rauhut, E., Noyer-Weidner, M., Lauster, R., Pawlek, B., Behrens, B., and Trautner, T., Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J.7 (1988) 2601–2609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wilks, A., Seldran, M., and Jost, J.-P., An estrogen-dependent demethylation at the 5′ end of the chicken vitellogenin gene is independent of DNA synthesis. Nucl. Acids Res.12 (1984) 1163–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wilson, V. L., and Jones, P. A., DNA methylation decreases in aging but not in immortal cells. Science220 (1983) 1055–1057.

    Article  CAS  PubMed  Google Scholar 

  213. Woodcock, D. M., Crowther, P. J., and Diver, W. P., The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem. biophys. Res. Com.145 (1987) 888–894.

    Article  CAS  PubMed  Google Scholar 

  214. Wu, J. C., and Santi, D. V., Kinetic and catalytic mechanism of HhaI methyltransferase. J. biol. Chem.262 (1987) 4778–4786.

    Article  CAS  PubMed  Google Scholar 

  215. Yesufu, H. M. I., Hanley, A., Rinaldi, A., and Adams, R. L. P., DNA methylase fromPisum sativum. Biochem. J.273 (1991) 469–475.

    Article  CAS  PubMed Central  Google Scholar 

  216. Yisraeli, J., Adelstein, R. S., Melloul, D., Nudel, U., Yaffe, D., and Cedar, H., Muscle-specific activation of a methylated chimeric actin gene. Cell46 (1986) 409–416.

    Article  CAS  PubMed  Google Scholar 

  217. Young, P. R., and Tilghman, S. M., Induction of α-fetoprotein synthesis in differentiating F9 teratocarcinoma cells in accompanied by a genome-wide loss of DNA methylation. Molec. cell. Biol.4 (1984) 898–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhang, X.-Y., Asiedu, C. K., Supakar, P. C., Khan, R., Ehrlich, K. C., and Ehrlich, M., Binding sites in mammalian genes and viral gene regulatory regions recognized by methylated DNA-binding protein. Nucl. Acids Res.18 (1990) 6253–6260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhu, X., Dunn, J. M., Phillips, R. A., Goddard, A. D., Paton, K. E., Becker, A., and Gallie, B. L., Preferential germline mutation of the paternal allele in retinoblastoma. Nature340 (1989) 312–313.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hergersberg, M. Biological aspects of cytosine methylation in eukaryotic cells. Experientia 47, 1171–1185 (1991). https://doi.org/10.1007/BF01918381

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01918381

Key words

Navigation