Skip to main content
Log in

Effects of antioxidant therapy in experimentally induced heart infarcts

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Experiments were performed on dog hearts following coronary ligation and treatment with synthetic antioxidant of dihydroquinoline type. Experimental groups were: (i) control dogs, (ii) dogs with ligation of descendens anterior coronary branch, (iii) coronary ligated dogs with antioxidant pretreatment and (iv) dogs with coronary ligation and simultaneous antioxidant infusion therapy. The heart infarctionper se is accompanied by the disintegration of membrane polyunsaturated fatty acids expressed by increase of malondialdehyde (MDA) concentration and the impairment of natural scavenging characterized by the decrease of superoxide dismutase (SOD) and reduced glutathione (GSH) content. The oral pretreatment with antioxidant for 8 days prevented or decreased the unfavourable pathobiochemical responses. The acute infusion therapy exerted no immediate protection, nonetheless, it could decrease the severity of pathological signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannister WH, Bannsiter JW (1979) Biological and clinical aspects of superoxide and superoxide dismutase. Developments in Biochemistry, Vol. II. B Elsevier, New York Amsterdam Oxford

    Google Scholar 

  2. Börzsönyi M, Török G, Surján A, Challis BC, Bär V (1981) Protective effect of a new antioxidant on acute hepatotoxicity caused by morpholine plus nitrite in rats. Toxicol Letters 7:285–288

    Google Scholar 

  3. Braunwald E (1976) Protection of the ischemic myocardium. Circulation 53:Suppl 1

    Google Scholar 

  4. Carpenter MP (1981) Antioxidant effects on the prostaglandin endoperoxide synthetase product profile. Fed Proc 40:189–194

    PubMed  Google Scholar 

  5. Fehér J, Bär-Pollák Zs, Sréter L, Fehér E, Toncsev H (1982) Biochemical markers in carbontetrachloride- and galactosamine-induced acute liver injuries: the effects of dihydroquinoline-type antioxidants. Brit J Exp Path 63:394–400

    PubMed  Google Scholar 

  6. Fehér J, Cornides A, Vereckei A, Láng I, Nékám K, Perl A, Gergely P (1984) Immunomodulatory effect of new radical scavengers. Drug Exptl Clin Res 10:549–562

    Google Scholar 

  7. Fehér J, Sulyok S, Pollák Zs, Toncsev H, Cornides A, Blázovics A, Szondy E, Gerö S (1984) The effect of a recently developed dihydroquinoline type radical scavenger in cholesterol induced hyperlipidemia. In: Lenzi S, Descovich GC (eds) Atherosclerosis and cardiovascular diseases. Editrice Compository, Bologna, pp 87–91

    Google Scholar 

  8. Fong KL, McKay PB, Poyer JL (1973) Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals. J Biol Chem 248:7792–7797

    PubMed  Google Scholar 

  9. Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    PubMed  Google Scholar 

  10. Gauduel Y, Duvelleroy MA (1984) Role of oxygen radicals in cardiac injury due to reoxygenation. J Mol Cell Cardiol 12:459–470

    Google Scholar 

  11. Guarnieri C, Flamigni F, Caldarera CM (1980) Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol 12:797–808

    PubMed  Google Scholar 

  12. Halliwell B, Gutteridge JMC (1982) Adv Studies Heart Metab 403–411

  13. Hearse DJ, Garlick PB, Humphrey SM (1977) Ischemic contracture of the myocardium; mechanisms and prevention. Am J Cardiol 39:986–993

    PubMed  Google Scholar 

  14. Hearse DJ, Humphrey SM, Bullock GR (1978) The oxygen paradox and the calcium paradox: Two facets of the same problem? J Mol Cell Cardiol 10:641–668

    PubMed  Google Scholar 

  15. Hess ML, Krause SM, Greenfield LJ (1980) Assessment of hypothermic cardioplegic protection of the global ischemic canine myocardium. J Thorac Cardiovasc Surg 80:293–301

    PubMed  Google Scholar 

  16. Hess ML, Manson NH (1984) Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol 16:969–985

    PubMed  Google Scholar 

  17. Hess MD, Okabe E, Kontos HA (1981) Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 13:767–772

    PubMed  Google Scholar 

  18. Hess ML, Okabe E, Poland J, Warner M, Stewart JR, Greenfield LJ (1983) Glucose, insulin, potassium protection during the course of hypothermic global ischemia and reperfusion: a new proposed mechanism by the scavenging of free radicals. J Cardiovasc Pharmacol 5:35–43

    PubMed  Google Scholar 

  19. Hess ML, Warner MF, Robbins AD, Curte S, Greenfield LJ (1981) Characterization of the excitation-contraction coupling system of cardiac sarcoplasmic reticulum. Cardiovasc Res 15:390–397

    PubMed  Google Scholar 

  20. Jennings RB, Reimer KA (1981) Lethal myocardial ischemic injury. Am J Pathol 102:241–255

    PubMed  Google Scholar 

  21. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Luchesi BR (1984) Canine myocardial reperfusion injury: its reduction by the combined administration superoxide dismutase and catalase. Circ Res 54:277–285

    PubMed  Google Scholar 

  22. Katz AM, Messineo FC (1981) Lipid membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circul Res 48:1–16

    Google Scholar 

  23. Kuehl EA, Humes JL, Ham EA (1980) Inflammation: the role of peroxidase-derived products. Adv Prostagland Thromb Res 6:77–86

    Google Scholar 

  24. Lebedev AV, Levitsky DO, Loginov VA, Smirnov VN (1982) The effects of primary products of lipid peroxidation on the transmembrane transport of calcium ions. J Mol Cell Cardiol 14 (Suppl 3):99–103

    Google Scholar 

  25. Leithner Chr, Sinzinger H, Silberbauer K (1980) Prostazyklin, ein Schutzfaktor für die Blutgefäße. Fortschr Med 98:1845–1849

    PubMed  Google Scholar 

  26. Lukas SK, Gardner TJ, Flaherty JT, Bulkley BH, Elmer EB, Gott WL (1980) Beneficial effects of mannitol administration during reperfusion after ischemic arrest. Circulation 62 (Suppl I):34–41

    Google Scholar 

  27. Meerson FZ, Kagan VE, Kozlov YuP, Belkina LM, Arkhipenko YuV (1982) The role of lipid peroxidation in the pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res Cardiol 77:465–485

    PubMed  Google Scholar 

  28. Misra HP, Fridovich I (1972) The role of superoxide anion in the antioxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  Google Scholar 

  29. Nakamura Y, Takahashi M, Hayashi J, Mori H, Ogawa S, Tanabe Y, Hara K (1982) Protection of ischemic myocardium with coenzyme Q10. Cadiovasc Res 16:132–137

    Google Scholar 

  30. Nayler WG, Poole-Wilson PA, Williams A (1979) Hypoxia and calcium. J Mol Cell Cardiol 11:683–706

    PubMed  Google Scholar 

  31. Okabe E, Hess ML, Oyama M, Ito H (1983) Characterization of free radical-mediated damage of canine cardiac sarcoplasmic reticulum. Arch Biochem Biophys 225:164–177

    PubMed  Google Scholar 

  32. Rao PS, Cohen MV, Mueller HS (1983) Production of free radicals and lipid peroxides in early experimental myocardial ischemia. J Mol Cell Cardiol 15:713–716

    PubMed  Google Scholar 

  33. Röth E, Török B, Zsoldos T, Matkovics B (1985) Lipid peroxidation and scavenger mechanism in experimentally induced heart infarcts. Basic Res Cardiol 80:530–536

    PubMed  Google Scholar 

  34. Reimer KA, Hill ML, Jennings RB (1981) Prolonged depletion of ATP and of the adenine nucleotides pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13:229–239

    PubMed  Google Scholar 

  35. Schwartz A, Wood JM, Allen JC, Bornet EP, Entman ML, Goldstein M, Sordahl LA, Suzuki M (1973) Biochemical and morphologic correlates of cardiac ischemia. Am J Cardiol 32:46–61

    Google Scholar 

  36. Sedlak J, Lindsay RH (1968) Estimation of total protein-bound and non-protein sulfhydryl groups in tissue with Ellman's reagent. Ann Biochem 25:192–205

    Google Scholar 

  37. Shlafer M, Chazov E, Saks V, Rona G, Kane PF, Kirsh MM (1982) Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic reperfused heart. J Thorac Cardiovasc Surg 83:830–839

    PubMed  Google Scholar 

  38. Shlafer M, Kane PF, Kirsh MM (1982) Effects of dimethyl sulfoxide on the globally ischemic heart: possible general relevance to hypothermic organ preservation. Cryobiology 19:61–69

    PubMed  Google Scholar 

  39. Shlafer M, Kane PF, Wiggins VY, Kirsh MM (1982) Possible role for cytotoxic oxygen metabolites in the pathogenesis of cardiac ischemic injury. Circulation 66(Suppl I):85–92

    Google Scholar 

  40. Toncsev H, Pollák Zs, Kiss A, Sréter L, Fehér J (1982) Acute carbon tetrachloride-induced lysosomal membrane damage and membrane protecting effect of a new dihydroquinoline type antioxidant. Int J Tissue React 4:325–330

    PubMed  Google Scholar 

  41. Toncsev H, Pollák Zs, Kiss A, Sréter L, Fehér J (1983) Protective effect of a new dihydroquinoline-type antioxidant on lysosomal injury in carbon tetrachloride induced free radical reaction. Kisérl Orvostudomány (in Hungarian) 35:16–21

    Google Scholar 

  42. Török B, Röth E, Mezey B, Szabados S, Simor T (1983) Epicardial ECG signals following global myocardial ischemia. Basic Res Cardiol 78:593–600

    PubMed  Google Scholar 

  43. Török B, Röth E, Trombitás K (1982) Ultrastructural changes of the subendocardium in ischemic and cardioplegic states before and after reperfusion. Eur Surg Res 14:17–26

    PubMed  Google Scholar 

  44. Török B, Röth E, Tigyi A, Zsoldos T, Matkovics B, Szabó L (1984) Membrane perturbations in myocardium: oxygen radical mediated injuries in experiments. Acta Chir Hung 25:185–192

    PubMed  Google Scholar 

  45. Török B, Röth E, Matkovics B (1984) Lipid-Peroxidation; In-vivo-Lipid-Membran-Interaktion, hervorgerufen durch experimentelle Hyperoxie, Hypoxie und Ischämie im Herzmuskel. Z exp Chir Transplantat künstl Organe 17:142–151

    Google Scholar 

  46. Török B (1980) Susceptibility of the myocardium in decreased coronary flow states. Magy Seb (in Hungarian) 33:81–94

    Google Scholar 

  47. Trump BF, Mergner NJ, Kahng MW, Saladino AJ (1976) Studies of subcellular pathophysiology of ischemia. Circulation 53(Suppl I):17–26

    Google Scholar 

  48. Vladimirov YuA, Olcnev VI, Suslova TB, Cheremisina ZP (1980) Lipid peroxidation in mitochondrial membrane. Adv Lipid Res 17:173–249

    PubMed  Google Scholar 

  49. WHO Food Additives No 3 (1972) A review of the technological efficacy of some antioxidants and synergist. WHO, Geneva

  50. Zsoldos P, Tigyi A, Montskó T, Puppi A (1983) Lipid peroxidation in the membrane damaging effect of silica-containing dust on rat lungs. Exp Path 23:73–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Török, B., Röth, E., Bär, V. et al. Effects of antioxidant therapy in experimentally induced heart infarcts. Basic Res Cardiol 81, 167–179 (1986). https://doi.org/10.1007/BF01907381

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907381

Key words

Navigation