Skip to main content
Log in

Experimental hypothyroidism: Depression of myocardial contractile function and hemodynamics and their reversibility by substitution with thyroid hormones

Die experimentelle Hypothyreose: Erzeugung und Nachweis einer hypothyreoten Kardiomyopathie und ihre reversible Normalisierung durch langfristige Substitution mit Schilddrüsenhormonen

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Hemodynamics and myocardial muscle mechanics have been studied in 22 euthyroid and 60 hypothyroid cats in which experimental hypothyroidism has been produced by thyroidectomy 61 days prior to the examination.

Left ventricular to body weight ratio was altered due to a decrease in left ventricular weight and an increase in body weight. Heart rate, cardiac output and cardiac index were decreased (by 12–15 per cent), whereas stroke volume remained unchanged. Peak systolic pressure of the left ventricle was moderately decreased, the other pressures were in the normal range. There was a marked and significant reduction of isovolumic contractility indices indicating a depression of myocardial contractility in situ by 20–27 per cent. The isolated ventricular myocardium exhibited decreases of isotonic muscle shortening, of maximum isometric tension development and of the rates of both, isotonic shortening and isometric tension development by 12–35 per cent. Force-velocity relationships of contraction and relaxation were depressed to lower values of contraction and relaxation velocity as well as of maximum isometric muscle tension. The alterations in myocardial muscle mechanics and hemodynamics were completely reversible following substitution of the hypothyroid group with physiological doses of L-thyroxine (5 μg/kg/day for 8–18 days). Excess increases of parameters of myocardial performance were found following substitution of the hypothyroid group with L-thyroxine (500 μg/kg/day) in accordance with the induction of experimental hyperthyroidism in these animals.

The results demonstrate impaired myocardial contractility and hemodynamics in experimental hypothyroidism. These changes are completely reversible by substitution with L-thyroxine in accordance with a reversible thyroid cardiomyopathy. The cellular mechanisms responsible for the altered cardiac activity in experimental hypothyroidism are discussed.

Zusammenfassung

An 22 euthyreoten und 60 hypothyreoten Katzen wurden hämodynamische Größen, Parameter der Ventrikelfunktion und die Mechanik des isolierten Ventrikelmyokards untersucht. Die experimentelle Hypothyreose wurde durch Thyreoidektomie 61 Tage vor der Untersuchung erzeugt.

Die Relation zwischen dem Gewicht des linken Ventrikels und dem Körpergewicht war entsprechend einer Abnahme des Ventrikelgewichtes und einer Zunahme des Körpergewichtes verändert. Herzfrequenz, Herzminutenvolumen und Herzindex waren gegenüber dem euthyreoten Normalkollektiv um 12–15% herabgesetzt, das Schlagvolumen blieb im wesentlichen unverändert. Der systolische Druck im linken Ventrikel war gegenüber der Norm geringfügig erniedrigt zentraler Venendruck, Druck im rechten Ventrikel, diastolischer und mittlerer Aortendruck lagen im Normbereich. Die isovolumetrische Inotropieindices des linken Ventrikels waren signifikant um 20–27% reduziert. Die Mechanik des isolierten Ventrikelmyokards war durch Abnahme der isotonischen Muskelverkürzung, der Maximalen Spannungsentwicklung und der Verkürzungs- wie auch Spannungsanstiegsgeschwindigkeit um 12–35% gekennzeichnet. Die Kraft-Geschwindigkeits-Beziehungen der Kontraktion und Relaxation waren zu niedrigeren Werten der Kontraktions- und Relaxationsgeschwindigkeit verlagert.

Die Veränderungen der Herzmuskelmechanik und Hämodynamik waren unter Substitution mit Schilddrüsenhormonen (5 μg/kg/Tag, 8–18 Tage) voll reversibel. Eine überschießende Zunahme der herzmuskelmechanischen und hämodynamischen Größen fand sich unter Substitution mit hohen Dosen von Schilddrüsenhormonen (500 μg/kg/Tag, 8–18 Tage).

Die Befunde zeigen eine Herabsetzung der Myokardkontraktilität und Hämodynamik bei der experimentellen Hypothyreose. Die Veränderungen sind voll reversibel unter Substitution mit Schilddrüsenhormonen entsprechend einer reversiblen hypothyreoten Kardiomyopathie. Die zugrundeliegenden metabolischen und zellulären Mechanismen werden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amidi, M., D. F. Leon, W. J. De Groot, F. W. Kroetz, J. J. Leonard, Effect of the thyroid state on myocardial contractility and ventricular ejection rate in man. Circulation38, 229 (1968).

    PubMed  Google Scholar 

  2. Barany, M., ATPase activity of myosin correlated with speed of muscle shortening. J. gen. Physiol.50, 197 (1967).

    Article  PubMed  Google Scholar 

  3. Benforado, J. M., L. L. Wiggins, Contractility, heart rate, and response to norepine phrine of isolated rat myocardium following J131-induced hypothyroidism. J. Pharmacol. exp. Ther.147, 70 (1965).

    PubMed  Google Scholar 

  4. Buccino, R. A., J. F. Spann, P. E. Pool, E. H. Sonnenblick, E. Braunwald, Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J. Clin. Invest.46, 1669 (1967).

    PubMed  Google Scholar 

  5. Burack, R., R. H. T. Edwards, M. Greene, M. L. Jones, The response to exercise before and after treatment of myxedema with thyroxine. J. Pharmacol. exp. Ther.176, 212 (1971).

    PubMed  Google Scholar 

  6. Engelhardt, R., H. W. Kunz, Energiestoffwechsel und Leistungszustand von Rattenherzen unter Halothannarkose bei Hypothyreose und Arterenolstimulation. Anästhesist21, 52 (1972).

    Google Scholar 

  7. Goodkind, M. J., G. E. Dambach, R. J. Luchi, Increased myosin ATPase activity associated with increased myocardial contractility in hyperthyroid guinea pigs. J. Clin. Invest.48, 30a (1969).

    Google Scholar 

  8. Howitt, G., D. J. Rowlands, D. Y. T. Leung, P. F. W. E., Logan, Myocardial contractility and the effects of beta-adrenergic blockade in hypothyroidism and hyperthyroidism. Clin. Sci.34, 485 (1968).

    Google Scholar 

  9. Kadenbach, B., Der Einfluß von Thyroidhormonen in vivo auf die oxydative Phosphorylierung und Enzymaktivitäten in Mitochondrien. Biochem. Z.343, 49 (1966).

    Google Scholar 

  10. Kalbfleisch, J. M., M. G. Walter, Acute inotropic action of L-thyroxine on the myxedematous heart. Clin. Res.15, 209 (1967).

    Google Scholar 

  11. Labhart, A., Die Schilddrüse. In:A. Labhart, Klinik der inneren Sekretion. 2. Auflage (Berlin-Heidelberg-New York 1976).

  12. Lee, Y. P., A. E. Takemori, H. A. Lardy, Enhanced oxydation of alphaglycerophosphate by mitchondria of thyroid-fed rats. J. Biol. Chem.234, 3051 (1959).

    PubMed  Google Scholar 

  13. Lee, Y. P., H. A. Lardy, Thyroid hormons and alphaglycerophosphate oxydation. Fed. Amer. Soc. exp. exp. Biol.20, 224 (1961).

    Google Scholar 

  14. Levey, G. S., S. E. Epstein, Myocardial adenylcyclase: activation by thyroid hormons and evidence for two adenylcyclase systems. J. Clin. Invest.48, 1663 (1969).

    PubMed  Google Scholar 

  15. McNeill, J. H., L. D. Muschek, T. M. Borody, The effect of trijodthyronine on cyclic AMP, phosphorylase and adenylcyclase in rat heart. Canad. J. Physiol. Pharmacol.47, 913 (1969).

    Google Scholar 

  16. Markowitz, C., W. M. Yater, Response of explanted cardiac muscle to thyroxine. Amer. J. Physiol.100, 162 (1932).

    Google Scholar 

  17. Mason, D. T., J. F. Spann, R. Zelis, Quantification of the contractile state of the intact human heart. Amer. J. Cardiol.26, 248 (1970).

    Article  PubMed  Google Scholar 

  18. Meerson, F. S., Hyperfunktion, Hypertrophie und Insuffizienz des Herzens (Berlin 1969).

  19. Meijler, F. L., Contractility of isolated hearts from myxedematous rats. Israel J. Med. Sci.22, 395 (1963).

    Google Scholar 

  20. Nayler, W., N. C. R. Meerillees, D. Chipperfield, J. B. Kurtz, Influence of hyperthyroidism on the uptake and binding of calcium by cardiac microsomal fractions and on mitochondrial structure. Cardiovasc. Res.5, 469 (1971).

    PubMed  Google Scholar 

  21. Rovetto, M. J., A. C. Hjalmarson, H. E. Morgan, M. J. Barrett, R. A. Goldstein, Hormonal control of cardiac myosin adenosine triphosphatase in the rat. Circulat. Res.31, 397 (1972).

    PubMed  Google Scholar 

  22. Skelton, C. L., F. E. Karsch, K. Wildenthal, Lack of acute effects of thyroid hormons on myocardial contractility. Amer. J. Physiol.224, 957 (1973).

    PubMed  Google Scholar 

  23. Sokoloff, L., P. A. Roberts, M. M. Januska, J. E. Kline, Mechanisms of stimulation of protein synthesis by thyroid hormons in vivo. Proc. Natl. Acad. Sci. U.S.60, 652 (1968).

    Google Scholar 

  24. Spann, J. F., R. A. Buccino, E. H. Sonnenblick, E. H. Braunwald, Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circulat. Res.21, 341 (1967).

    PubMed  Google Scholar 

  25. Spieckermann, P., H. J. Bretschneider, Vereinfachte quantitative Auswertung von Indikatorverdünnungskurven. Tierexperimente und Modellversuche zur Fehlerbreite von Näherungsverfahren für eine vereinfachte oder automatische Herzzeitvolumenbestimmung mit der Kälteverdünnungsmethode. Arch. Kreislaufforschg.55, 211 (1968).

    Google Scholar 

  26. Strauer, B. E., A. Scherpe, Experimental hyperthyroidism I.: Hemodynamics and contractility in situ. Basic Res. Cardiol.70, 115 (1975).

    Article  PubMed  Google Scholar 

  27. Strauer, B. E., A. Scherpe, Experimental hyperthyroidism II.: Mechanics of contraction and relaxation of isolated ventricular myocardium. Basic Res. Cardiol.70, 130 (1975).

    Article  Google Scholar 

  28. Strauer, B. E., A. Scherpe, Experimental hyperthyroidism III.: Contractile responses to propranolol of the intact heart and of the isolated ventricular myocardium. Basic Res. Cardiol.70, 237 (1975).

    PubMed  Google Scholar 

  29. Strauer, B. E., A. Scherpe, Experimental hyperthyroidism IV.: Myocardial muscle mechanics and oxygen consumption in euand hyperthyroidism. Basic Res. Cardiol.70, 246 (1975).

    PubMed  Google Scholar 

  30. Strauer, B. E., M. Tauchert, H. W. Heiss, K. Kochsiek, H. J. Bretschneider, On the relation between coronary blood flow, oxygen consumption and cardiac work in patients with and without angina pectoris. In:A. Maseri (Ed.), Myocardial blood flow in man. Methods and significance in coronary disease. p. 465 ff. (Torino 1972).

  31. Strauer, B. E., M. Tauchert, L. Cott, K. Kochsiek, H. J. Bretschneider, Simultane Bestimmung des Sauerstoffverbrauches und der Koronardurchblutung des linken Ventrikels bei Mitral- und Aortenklappenfehlern mit einem neuen hämodynamischen Parameter und der Argon-Fremdgasmethode. Verh. Dtsch. Ges. inn. Med.76, 217 (München 1970).

    Google Scholar 

  32. Strauer, B. E., Dynamik, Koronardurchblutung und Sauerstoffverbrauch des normalen und kranken Herzens (Basel 1975).

  33. Strauer, B. E., Force-velocity relations of isotonic relaxation in mammalian heart muscle. Amer. J. Physiol.224, 431 (1973).

    PubMed  Google Scholar 

  34. Strauer, B. E., A. Scherpe, Myocardial mechanics and oxygen consumption in experimental hyperthyroidism. In: Recent advances in studies on cardiac structure and metabolism, Vol. 8 —The sarcoplasmatic reticulum-Ed.P. E. Roy andP. Harris (Baltimore 1975).

  35. Strauer, B. E., A. Schenk, I. Brune, D. Koll, E. Perings Lupus cardiomyopathy in uncomplicated systemic lupus erythematosus. Amer. Heart J. 1976, in press.

  36. Su, J. Y., H. G. Lahrtz, P. E. Poot, Effects of hyperthyroidism on glycerol-extracted cardiac muscle. Circulation42, Suppl. III: 202 (1970).

    Google Scholar 

  37. Tata, J. R., L. Ernster, O. Lindberg, E. Arrhenius, S. Pedersen, R. Hedman, The action of thyroid hormons at the cell level. Biochem. J.86, 408 (1963).

    PubMed  Google Scholar 

  38. Thyrum, P. T., E. M. Kritcher, R. J. Luchi, Effect of L-thyroxine on the primary structure of cardiac myosin. Biochim. Biophys. Acta197, 335 (1970).

    PubMed  Google Scholar 

  39. Völker, W., B. E. Strauer, G. Riecker, Die maximale Verkürzungsgeschwindigkeit (Vmax) am hypertrophierten linken Ventrikel des Meerschweinschens beim Goldblatthochdruck. Verh. Dtsch. Ges. Kreislauforschg38, 161 (Darmstadt 1972).

    Google Scholar 

  40. Yater, W. M., The tachycardia, time factor, survival period and site of action of thyroxine in the perfused hearts of thyroxinized rabbits. Amer. J. Physiol.98, 338 (1931).

    Google Scholar 

  41. Yazaki, Y., M. S. Raben, Effect of the thyroid state on the enzymatic characteristics of cardiac myosin. Circulat. Res.36, 208 (1975).

    Google Scholar 

  42. Zebe, E. A., A. Dellbrück, Th. Bücher, Glycerophosphatdehydrogenase unter zellphysiologischen Aspekten. Ber. ges. Physiol.189, 115 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 figures and 3 tables

Supported by Deutsche Forschungsgemeinschaft.

This study represents a part of the medical dissertation ofW. Schulze at the University of Göttingen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauer, B.E., Schulze, W. Experimental hypothyroidism: Depression of myocardial contractile function and hemodynamics and their reversibility by substitution with thyroid hormones. Basic Res Cardiol 71, 624–644 (1976). https://doi.org/10.1007/BF01906408

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906408

Keywords

Navigation