Skip to main content
Log in

Heat production and oxygen consumption of the isolated rabbit heart: Their relation to mechanical function

Wärmeproduktion und Sauerstoffverbrauch isolierter Kaninchenherzen und ihre Beziehung zur Herzfunktion

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

A method is described for simultaneous determination of the heat production and the oxygen consumption of the isolated, isovolumetrically beating rabbit heart. The perfusion of the heart was performed via the aorta at a constant flow rate with carbogen saturated Tyrode's solution at a temperature of 37.0°C. Heart function was varied by stepwise augmentation of the left intraventricular volume (LVV) by means of a balloon catheter. The following mechanical parameter of heart function were determined: enddiastolic pressure (EDP), peak pressure (PP), developed pressure (DP), max. contraction and relaxation velocity (dP/dt-A and dP/dt-B), enddiastolic tension (Tens-EDP), peak tension (Tens-PP), developed tension (Tens-DP), and circumferential tension (Tens-Cir). DP, dP/dt-A and dP/dt-B showed a maximum response to changes of the LVV at 2.0 ml LVV and 19.3 mm Hg EDP.

Heart production (H) and oxygen consumption (Q) were correlated closely to mechanical function and to each other (r=0.89, n=8). The ratio H/Q was 4.9 cal/ml O2 and remained constant during the experiment.

The myocardial energy consumption was significantly correlated to all contraction parameters with the best fit to DP and Tens-Cir (r=0.934 and 0.933 resp.). On the basis of the calculated mean regression lines, the function-independent and the function-dependent energy consumption were calculated.

Zusammenfassung

In der vorliegenden Arbeit wird eine Methode beschrieben, die, basierend auf demFickschen Prinzip, die gleichzeitige Bestimmung der Wärmeproduktion und des Sauerstoffverbrauchs isolierter, isovolumetrisch kontrahierender Kaninchenherzen erlaubt. Die Herzen wurden volumenkonstant über die Aorta mit carbogengesättigter Tyrodelösung von 37°C perfundiert.

Änderungen der mechanischen Funktion des Myokards wurden durch Variation des linksventrikulären Volumens mit Hilfe eines Ballonkatheters induziert. Folgende Parameter wurden bestimmt: enddiastolischer Druck (EDP), Spitzendruck (PP), Druckamplitude (DP), max. Kontraktions-(dP/dt-A) und Erschlaffungsgeschwindigkeit (dP/dt-B) sowie die Spannungsparameter Spitzenspannung (Tens-PP), Spannungsamplitude (Tens-DP), zirkumferentielle Spannung (Tens-Cir).

Parallel zu der Zunahme der mechanischen Aktivität des Myokards kommt es zu einer signifikanten Zunahme der Wärmeproduktion (H) und des O2-Verbrauches (Q). Q und H sind gut miteinander korreliert (r=0,89). Das Verhältnis H/Q beträgt 4,9 cal/ml und ist weitgehend konstant. Der myokardiale Energieverbrauch war signifikant zu allen Kontraktionsparametern korreliert, am engsten zu DP und Tens-Cir.

Die gleichzeitige Bestimmung des O2-Verbrauches und der Wärmeproduktion des Herzens ermöglicht es, festzustellen, ob [1] Energie über anaerobe Mechanismen gewonnen wurde (H/Q>5,1) oder [2] chemische Energie im Myokard gespeichert wurde (H/Q<4,6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afonso, S., D. H. McKenna, G. S. O'Brien, G. G. Rowe, G. P. Crumpton: Left ventricular heat production during induced tachycardia in the intact dog. Amer. J. Physiol.209, 33–36 (1965).

    PubMed  Google Scholar 

  2. Afonso, S., G. S. O'Brien, C. V. Jaramillo, D. H. McKenna, G. G. Rowe: Left ventricular heat production after lowering left ventricular work. Amer. J. Physiol.210, 553–556 (1966).

    PubMed  Google Scholar 

  3. Afonso, S., G. G. Rowe, J. E. Lugo, C. W. Crumpton: Left ventricular heat production in intact anaesthetized dogs. Amer. J. Physiol.208, 946–953 (1965).

    PubMed  Google Scholar 

  4. Braunwald, E.: Control of myocardial oxygen consumption. Physiological and clinical considerations. Amer. J. Cardiol.27, 416–432 (1971).

    PubMed  Google Scholar 

  5. Bretschneider, H. J.: Die hämodynamischen Determinanten des myokardialen Sauerstoffverbauches. In: Die therapeutische Anwendung beta-sympathikolytischer Stoffe. Ed.:Dengler, H. J., pp. 45–60 (Stuttgart-New York 1972).

  6. Chapman, J. B., C. L. Gibbs, W. E. Gibson: Effects of calcium and sodium on cardiac contractility and heat production in rabbit papillary muscle. Circulat. Res.27, 601–610 (1970).

    PubMed  Google Scholar 

  7. Clark, L. C., R. Wolf, D. Granger, Z. Taylor: Continuous recording of blood oxygen tension by polarography. J. appl. Physiol.6, 189–193 (1953).

    PubMed  Google Scholar 

  8. Coleman, H. N., E. H. Sonnenblick, E. Braunwald: Mechanism of norepinephrine-induced stimulation of myocardial oxygen consumption. Amer. J. Physiol.221, 778–783 (1971).

    PubMed  Google Scholar 

  9. Diem, K., C. Lentner: Scientific tables (Basel 1968).

  10. Dudeck, J.: Versuchsplanung und Auswertung bei Einzelversuchen und kleinsten Kollektiven. Drug Res.23, 1187–1192 (1973).

    Google Scholar 

  11. Gibbs, C. L.: Role of catecholamines in heat production in the myocardium. Circulat. Res.21, 223–230 (1967).

    Google Scholar 

  12. Gibbs, C. L., W. R. Gibson: Energy production in cardiac isotonic contractions. J. gen. Physiol.56, 732–750 (1970).

    PubMed  Google Scholar 

  13. Gibbs, C. L., W. R. Gibson: Effect of ouabain in the energy output of rabbit cardiac muscle. Circulat. Res.24, 951–967 (1969).

    PubMed  Google Scholar 

  14. Gibbs, C. L., W. R. Gibson: Isoprenaline, propranolol, and the energy output of rabbit cardiac muscle. Cardiovasc. Res.6, 508–515 (1972).

    PubMed  Google Scholar 

  15. Gibbs, C. L., W. F. H. M. Mommaerts, N. V. Ricchiuti: Energetics of cardiac contractions. J. Physiol.191, 25–46 (1967).

    PubMed  Google Scholar 

  16. Gibbs, C. L., P Vaughan: The effect of calcium depletion upon the tension-independent component of the cardiac heat production. J. gen. Physiol.52, 532–550 (1968).

    PubMed  Google Scholar 

  17. Goedecke, R.: Über die Wirkung von Adrenalin auf den myokardialen Ruhesauerstoffverbrauch in Abhängigkeit von der extracellulären Kalium- und Calcium-Konzentration. Dissertation (Mainz 1971).

  18. Güttler, K., M. Theisohn: Oxygen consumption and heat production of potassium arrested hearts under the influence of Ca, ouabain, and adrenaline. Naunyn-Schmiedeberg's Arch. Pharmacol.277, 24 R (1973).

    Google Scholar 

  19. Hill, A. V.: The heat of activation and the heat of shortening in a muscle twitch. Proc. Roy. Soc. B,136, 195–211 (1949).

    Google Scholar 

  20. Hill, A. V.: Work and heat in a muscle twitch. Proc. Roy. Soc. B,136, 220–228 (1949 b).

    Google Scholar 

  21. Hill, A. V., R. C. Woledge: An examination of absolute values in myothermic measurements. J. Physiol.162, 311–333 (1962).

    PubMed  Google Scholar 

  22. Klaus, W., R. Krebs: Über die Abhängigkeit der Strophanthinwirkung auf den myokardialen Sauerstoffverbrauch vom Funktionszustand des Herzens. Naunym-Schmiedeberg's Arch. Pharmacol.264, 337–353 (1969).

    Google Scholar 

  23. Klocke, F. J., E. Braunwald, J. Ross: Oxygen cost of electrical activity of the heart. Circulat. Res.18, 357–365 (1966).

    PubMed  Google Scholar 

  24. Klocke, F. J., G. A. Kaiser, J. Ross, E. Braunwald: Mechanism of increase of myocardial oxygen uptake produced by catecholamines. Amer. J. Physiol.209, 913–918 (1965).

    PubMed  Google Scholar 

  25. Krayenbühl, H. P., W. Rutishauser, P. Wirz, E. Luethy: Kraft-Geschwindigkeitsbeziehung während der isovolumetrischen Phase der linksventrikulären Systole beim Menschen. In: Heart failure. Pathophysiological and clinical aspects. Ed.Reindell, H., J. Keul, E. Doll, pp. 479–488 (Stuttgart 1968).

  26. Kushmerick, M. J., R. E. Larson, R. E. Davies: The chemical energetics of muscle contraction. I. Activation heat, heat of shortening and ATP utilization for activation-relaxing process. Proc. Roy. Soc. B,174, 293–313 (1969).

    Google Scholar 

  27. Leuthardt, F.: Lehrbuch der Physiologischen Chemie, 15. Auflage (Berlin 1963).

  28. Lübbers, D. W., E. Windisch: The measurement of high oxygen pressure in small quantities of gases and fluids with the Pt-electrode. Pflügers Arch. ges. Physiol.276, 429–434 (1963).

    Google Scholar 

  29. McDonald, R. H.: Developed tension: a major determinant of myocardial oxygen consumption. Amer. J. Physiol.210, 351–356 (1966).

    PubMed  Google Scholar 

  30. McDonald, R. H.: Myocardial heat production: its relationship to tension development. Amer. J. Physiol.220, 894–900 (1971).

    PubMed  Google Scholar 

  31. Müller-Ruchholtz, E. R., W. Lochner: Utilization of glycolytic energy for external heart work. J. Molec. Cell. Cardiol.3, 15–29 (1971).

    Google Scholar 

  32. Neill, W. A., W. E. Huckabee: Anaerobic heat production by the heart. J. clin. Invest.45, 1412–1420 (1966).

    PubMed  Google Scholar 

  33. Neill, W. A., N. Krasnow, H. J. Levine, R. Gorlin: Myocardial anaerobic metabolism in intact dog. Amer. J. Physiol.204, 427–432 (1963).

    PubMed  Google Scholar 

  34. Neill, W. A., R. J. Wagner, J. V. Messner, N. Krasnow, R. Gorlin: Left ventricular heat production measured by coronary flow and temperature gradient. J. appl. Physiol.16, 883–890 (1961).

    PubMed  Google Scholar 

  35. Rodboard, S., F. Williams, C. Williams: The spherical dynamics of the heart (Myocardial tension, oxygen consumption, coronary blood flow, and efficiency). Amer. Heart J.57, 348–360 (1959).

    PubMed  Google Scholar 

  36. Rusy, B. F., R. L. Coulson: Energy consumption in the isolated rabbit heart. Anesthesiology39, 428–435 (1973).

    PubMed  Google Scholar 

  37. Sachs, L.: Statistische Auswertungsmethoden (Berlin-Heidelberg-New York 1969).

  38. Sarnoff, S. J., E. Braunwald, G. H. Welch, R. B. Case, W. N. Stainsby, R. Macruz: Hemodynamic determinants of oxygen consumption of the heart with special reference to tension-time index. Amer. J. Physiol.192, 148–156 (1958).

    PubMed  Google Scholar 

  39. Shipp, J. C., O. G. Matos, H. Knizley, L. E. Crevasse: Carbon dioxyd formed from endogeneous and exogeneous substrates in perfused rat heart. Amer. J. Physiol.207, 1231–1236 (1964).

    PubMed  Google Scholar 

  40. Smith, J. R.: Metabolic effects of epinephrine in the isolated, perfused rat heart. J. Biol. Chem.289, 2721–2729 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 figures and tables

Supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theisohn, M., Friedrich, M., Justus, P. et al. Heat production and oxygen consumption of the isolated rabbit heart: Their relation to mechanical function. Basic Res Cardiol 72, 19–33 (1977). https://doi.org/10.1007/BF01906298

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906298

Keywords

Navigation