Skip to main content
Log in

Effects of high hydrostatic pressure on ‘passive’ monovalent cation transport in human red cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effects of high hydrostatic pressure (up to 400 ATA) on the ‘passive’ (defined as ouabain + bumetanide + EGTA-insensitive) influx and efflux of radiotracer cations (K+ Rb+, Na+, Cs+) has been studied in human red cells suspended at different medium tonicities giving altered cell volumes. Under all conditions studied, cation permeability was raised at pressure, and at least two distinct components were found to comprise this flux. Thus, increasing pressure (1) caused a generalized increase in cation permeability which was unaffected by the anion present, demonstrated linear concentration dependence, and wasreduced with cell swelling, and (2) stimulated a specific KCl pathway which was Cl dependent, demonstrated saturation kinetics with raised [K]o and wasincreased with cell swelling. High hydrostatic pressure caused a significant alteration to red cell morphology from the normal biconcave disc to cup-shaped forms and it is proposed that this is associated with the unmasking of the volume-sensitive KCl system (2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adragna, N.C., Tosteson, D.C. 1984. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells.J. Membrane Biol. 78: 43–52

    Article  Google Scholar 

  • Branton, D., Tyler, J., Hargreaves, W. 1980. Protein interactions in the erythrocyte cytoskeleton.In: Membrane Transport in Erythrocytes. Alfred Benzon Symposium No. 14. U.V. Lassen, H.H. Ussing, and J.O. Wieth, editors. pp. 23–30. Munksgaard, Copenhagen

    Google Scholar 

  • Bruner, L.J., Hall, J.E. 1983. Pressure effects on alamethicin conductance in bilayer membranes.Biophys. J. 44: 39–47

    PubMed  Google Scholar 

  • Canfield, V.A., Macey, R.I. 1984. Anion exchange in human erythrocytes has a large activation volume.Biochim. Biophys. Acta 778: 379–384

    PubMed  Google Scholar 

  • Chipperfield, A.R. 1980. An effect of chloride on (Na+K) cotransport in human red blood cells.Nature (London) 286: 281–282

    Article  Google Scholar 

  • Cornish-Bowden, A. 1976. Principles of Enzyme Kinetics. Butterworths, London

    Google Scholar 

  • Dacie, J.V., Lewis, S.M. 1975. Practical Haematology. 5th Ed. Churchill Livingstone, London

    Google Scholar 

  • Dunham, P.B., Ellory, J.C. 1981. Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride.J. Physiol. (London) 318: 511–530

    Google Scholar 

  • Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77: 1711–1715

    PubMed  Google Scholar 

  • Ebbecke, U. 1936. Uber plasmatische Kontraktionen von roten Blutkorperchen, Paramacien und Algenzellen unter der Einwirkung hoher Drucke.Pfluegers Arch. Gesamte Physiol. 238: 452–466

    Article  Google Scholar 

  • Ellory, J.C., Dunham, P.B., Logue, P.J., Stewart, G.W. 1982. Anion-dependent cation transport in erythrocytes.Philos. Trans. R. Soc. London B 299: 483–495

    Google Scholar 

  • Ellory, J.C., Flatman, P.W., Stewart, G.W. 1983. Inhibition of human red cell sodium and potassium transport by divalent cations.J. Physiol. (London) 340: 1–17

    Google Scholar 

  • Ellory, J.C., Hall, A.C. 1985. The effects of high hydrostatic pressure on volume-sensitive cation transport in human red cells.J. Physiol. (London) 362: 15P

    Google Scholar 

  • Ellory, J.C., Hall, A.C., Stewart, G.W. 1985. Volume-sensitive cation fluxes in mammalian red cells.Mol. Physiol. 8: 235–246

    Google Scholar 

  • Ellory, J.C., Hall, A.C., Stewart, G.W. 1986. Volume-sensitive KCl transport in human red cells.J. Physiol. (London) 374: 33P

    Google Scholar 

  • Ellory, J.C., Stewart, G.W. 1982. The human erythrocyte Cl-dependent Na+K cotransport system as a possible model for studying the action of loop diuretics.Br. J. Pharmacol. 75: 183–188

    PubMed  Google Scholar 

  • Fortes, P.A.G., Ellory, J.C. 1975. Asymmetric membrane expansion and modification of active and passive cation permeability of human red cells by the fluorescent probe 1-anilino-8-naphthalene sulphonate.Biochim. Biophys. Acta 413: 65–78

    PubMed  Google Scholar 

  • Funder, J. 1980. Alkali metal cation transport through the human erythrocyte membrane through the anion exchange mechanism.Acta Physiol. Scand. 108: 31–37

    PubMed  Google Scholar 

  • Gardiner, R.M., Barnes, N.D., Ellory, J.C. 1983. Congenital haemolytic anaemia associated with abnormal inducible red cell cation permeability.Arch. Disease Childhood 58: 547–549

    Google Scholar 

  • Gárdos, G. 1956. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30: 653–654

    Article  Google Scholar 

  • Glader, B.E., Nathan, D.G. 1978. Cation permeability alterations during sickling: Relationship to cation composition and cellular hydration of irreversibly sickled cells.Blood 51: 983–989

    PubMed  Google Scholar 

  • Glynn, I.M. 1956. Sodium and potassium movements in human red cells.J. Physiol. (London) 134: 278–310

    Google Scholar 

  • Hall, A.C., Ellory, J.C. 1985. The effects of high hydrostatic pressure on amino acid transport in sheep red cells.1st Congr. Comp. Physiol. Biochem. B96. I.V.B.S. Liege, Belgium

    Google Scholar 

  • Hall, A.C., Ellory, J.C., Klein, R.A. 1982. Pressure and temperature effects on human red cell cation transport.J. Membrane Biol. 68: 47–56

    Article  Google Scholar 

  • Hall, A.C., Willis, J.S. 1984. Differential effects of temperature on three components of passive permeability to potassium in rodent red cells.J. Physiol. (London) 348: 629–643

    Google Scholar 

  • Haubrich, R. 1937. Uber die Druckresistenze der Erythrocyten.Pfluegers Arch. Gesamte Physiol. 239: 304–313

    Article  Google Scholar 

  • Hochachka, P.W., Somero, G.N. 1973. Strategies of Biochemical Adaptation. W.B. Saunders Co., Philadelphia, Pa.

    Google Scholar 

  • Johnson, S.M., Miller, K.W. 1975. The effect of pressure and the volume of activation on the monovalent cation and glucose permeabilities of liposomes of varying composition.Biochim. Biophys. Acta 375: 286–291

    PubMed  Google Scholar 

  • Kaji, D.M. 1985. Volume-activated K flux in human erythrocytes.J. Gen. Physiol. 86: 40a

    Google Scholar 

  • Kamentsky, L.A. 1980. Objective measures of information from blood cells.Blood Cells 6: 121–140

    PubMed  Google Scholar 

  • Kregenow, F.M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media.Ann. Rev. Physiol. 43: 493–505

    Article  Google Scholar 

  • Lauf, P.K. 1983. Thiol-dependent passive K/Cl transport in sheep red cells: II. Loss of Cl and N-ethylmaleimide sensitivity in maturing high K+ cells.J. Membrane Biol. 73: 247–256

    Article  Google Scholar 

  • Lauf, P.K. 1985. K+∶Cl cotransport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell.J. Membrane Biol. 88: 1–13

    Google Scholar 

  • Lauf, P.K., Adragna, N.C., Garay, R.P. 1984. Activation by N-ethylmaleimide of a latent K−Cl flux in human red blood cells.Am. J. Physiol. 246: C385-C390

    Google Scholar 

  • Lauf, P.K., Perkins, C.M., Adragna, N.C. 1985. Cell volume and metabolic dependence of NEM-activated K−Cl flux in human red blood cells.Am. J. Physiol. 249: C124-C128

    PubMed  Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.In: Current Topics in Membranes and Transport. A. Kleinzeller and F. Bronner, editors. Vol. 10, pp. 217–277. Academic Press, New York

    Google Scholar 

  • Lux, S.E. 1979. Spectrin-actin membrane skeleton of normal and abnormal red blood cells.Semin. Haematol. 16: 21–51

    Google Scholar 

  • Macdonald, A.G. 1975. Physiological aspects of deep sea biology.In: Monographs of the Physiological Society, No. 31. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Macdonald, A.G. 1984. The effects of pressure on the molecular structure and physiological functions of cell membranes.Philos. Trans. R. Soc. London B 304: 47–68

    Google Scholar 

  • Macdonald, A.G., Shelton, C.J. 1985. Ionic regulation under high pressure: Some observations of comparative and theoretical interest.In: High Pressure Effects on Selected Biological Systems. A.J.R. Pequex and R. Gilles, editors. pp. 51–67. Springer, Berlin

    Google Scholar 

  • Pandey, G.N., Sarkadi, B., Haas, M., Gunn, R.B., Davis, J.M., Tosteson, D.C. 1978. Lithium transport pathways in human red cells.J. Gen. Physiol. 72: 233–247

    PubMed  Google Scholar 

  • Parker, J.C. 1983. Volume-sensitive sodium movements in dog red cells.Am. J. Physiol. 244: C324-C330

    Google Scholar 

  • Podolsky, R.L.J. 1956. A mechanism for the effect of hydrostatic pressure on biological systems.J. Physiol. (London) 132: 38P-39P

    Google Scholar 

  • Ponder, E. 1948. Hemolysis and Related Phenomena. Grune Stratton, New York

    Google Scholar 

  • Poznansky, M., Solomon, A.K. 1972. Regulation of human red cell volume by linked cation fluxes.J. Membrane Biol. 10: 259–266

    Google Scholar 

  • Sanders, S.K., Alexander, E.L., Braylan, R.B. 1975. A high yield technique for preparing cells fixed in suspension for scanning electron microscopy.J. Cell. Biol. 67: 476–480

    Article  PubMed  Google Scholar 

  • Schatzmann, H.J. 1953. Herzglykoside als Hemmstoffe fur den aktiven Kaliumundn Natriumtransport durch die Erythrocytenmembran.Helv. Physiol. Pharmacol. Acta 11: 346–354

    PubMed  Google Scholar 

  • Shotton, D. 1983. The proteins of the erythrocyte membrane.In: Electron Microscopy of Proteins. J.R. Harris, editor. pp. 205–330. Academic, London

    Google Scholar 

  • Wiater, L.A., Dunham, P.B. 1983. Passive transport of K+ and Na+ in human red blood cells: Sulfhydryl binding agents and furosemide.Am. J. Physiol. 245: C348-C356

    Google Scholar 

  • Wiley, J.S. 1977. Genetic abnormalities of cation transport in the human erythrocyte.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp 337–361. Academic, London

    Google Scholar 

  • Wiley, J.S., Cooper, R.A. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.J. Clin. Invest. 53: 745–755

    PubMed  Google Scholar 

  • Young, J.D., Ellory, J.C. 1982. Flux measurements.In: Red Cell Membranes: A Methodological Approach. J.C. Ellory and J.D. Young, editors. pp. 119–133. Academic, London

    Google Scholar 

  • Zimmerman, A.M. 1970. High Pressure Effects of Cellular Processes. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, A.C., Ellory, J.C. Effects of high hydrostatic pressure on ‘passive’ monovalent cation transport in human red cells. J. Membrain Biol. 94, 1–17 (1986). https://doi.org/10.1007/BF01901009

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01901009

Key Words

Navigation