Skip to main content
Log in

Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories

  • Part II. Invited Papers Dedicated To John Archibald Wheeler
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincaré gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aldrovandi and E. Stédile,Int. J. Theor. Phys. 23, 301 (1984).

    Google Scholar 

  2. P. Baekler and F. W. Hehl, inFrom SU(3) to Gravity—Festschrift in Honor of Yuval Ne'eman, E. Gotsman and G. Tauber, eds. (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  3. P. Baekler, F. W. Hehl, and H. J. Lenzen, “Vacuum Solutions with Double Duality Properties of the Poincaré Gauge Field Theory. II,” inProceedings of the Third Marcel Grossmann Meeting on General Relativity, Hu Ning, ed. (North-Holland, Amsterdam, 1983), p. 107.

    Google Scholar 

  4. P. Baekler, F. W. Hehl, and E. W. Mielke, “Vacuum Solutions with Double Duality Properties of a Quadratic Poincaré Gauge Field Theory,” inSecond Marcel Grossmann Meeting on the Recent Progress of the Fundamentals of General Relativity, R. Ruffini, ed. (North-Holland, Amsterdam, 1981), p. 413.

    Google Scholar 

  5. P. G. Bergmann and V. DeSabbata, eds.,Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity (Proceedings of the Erice School, May 1979) (Plenum Press, New York, 1980).

    Google Scholar 

  6. B. A. Bilby,Prog. Solid Mech. (Amsterdam) 1, 331 (1980).

    Google Scholar 

  7. É. Cartan,C. R. Acad. Sci. (Paris) 174, 583 (1922).

    Google Scholar 

  8. É. Cartan,Ann. Ec. Norm. Sup. 40, 325 (1923);41, 1 (1924).

    Google Scholar 

  9. É. Cartan,Ann. Ec. Norm. Sup. 42, 17 (1925).

    Google Scholar 

  10. É. Cartan,Leçon sur la Géométrie des Espaces de Riemann (Gauthier-Villars, Paris, 1963), 2nd edn.

    Google Scholar 

  11. D. G. B. Edelen,Applied Exterior Calculus (Wiley, New York, 1985).

    Google Scholar 

  12. A. Einstein,The Meaning of Relativity (Princeton University, Princeton, New Jersey, 1955), 5th edn.

    Google Scholar 

  13. A. Einstein,Grundzüge der Relativitätstheorie (Vieweg, Braunschweig, 1960), 2nd edn.

    Google Scholar 

  14. A. C. Eringen,Nonlinear Theory of Continuous Media (McGraw-Hill, New York, 1962).

    Google Scholar 

  15. H. Goenner, Invited plenary talk given at the Annual Conference of the German Physical Society (DPG) in Munich, 1985.

  16. W. Günther,Abhandl. Braunschweig. Wiss. Ges. 6, 207 (1954).

    Google Scholar 

  17. K. Hayashi and A. Bregman,Ann. Phys. (N.Y.) 75, 562 (1973).

    Article  Google Scholar 

  18. K. Hayashi and T. Shirafuji,Prog. Theor. Phys. 64, 866, 883, 1435, 2222 (1980);65, 525, 2079(E) (1981);66, 318, 741(E), 258 (1981).

    Google Scholar 

  19. F. W. Hehl, “On the Energy Tensor of Spinning Massive Matter in Classical Field Theory and General Relativity”,Rep. Math. Phys. (Warsaw) 9, 55 (1976).

    Article  Google Scholar 

  20. F. W. Hehl, “Four Lectures on Poincaré Gauge Field Theory,” inProceedings of the 6th Course of the International School of Cosmology and Gravitation on Spin, Torsion and Supergravity, P. G. Bergmann and V. de Sabbata, eds. (Plenum Press, New York, 1980).

    Google Scholar 

  21. F. W. Hehl,Found. Phys. 15, 451 (1985).

    Google Scholar 

  22. F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester,Rev. Mod. Phys. 48, 393 (1976).

    Article  Google Scholar 

  23. A. Held, ed.General Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein, Vol. 1 (Plenum, New York, 1980).

    Google Scholar 

  24. J. Hennig and J. Nitsch,Gen. Relativ. Gravit. 13, 947 (1981).

    Article  Google Scholar 

  25. R. Hojman, C. Mukku, and W. A. Sayed,Phys. Rev. D 22, 1915 (1980).

    Article  Google Scholar 

  26. W. Jaunzemis,Continuum Mechanics (Macmillan, New York, 1967).

    Google Scholar 

  27. G. D. Kerlick, “Spin and Torsion in General Relativity: Foundations and Implications for Astrophysics and Cosmology,” Ph.D. thesis, Princeton, 1975.

  28. T. W. B. Kibble,J. Math. Phys. 2, 212 (1961).

    Article  Google Scholar 

  29. H. Kleinert,Gauge Theory of Stresses and Defects, to be published.

  30. K. Kondo, ed.,RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and the Physical Sciences by Means of Geometry (Gakujutsu Bunken Fukyu-Kai, Tokyo, 1955, 1958, 1962, 1968), Vols. 1–4.

    Google Scholar 

  31. W. Kopczyński,J. Phys. A 15, 493 (1982).

    Google Scholar 

  32. E. Kröner,Ann. Phys. (Leipzig) 11, 13 (1963).

    Google Scholar 

  33. E. Kröner, ed.,Mechanics of Generalized Continua. IUTAM Symposium (Springer, Berlin, 1968).

    Google Scholar 

  34. E. Kröner, inPhysique de Defauts (Les Houches School), R. Balian et al., eds. (North-Holland, Amsterdam, 1981).

    Google Scholar 

  35. L. D. Landau and E. M. Lifshitz,Theory of Elasticity. Vol. 7 ofCourse of Theoretical Physics (Pergamon, Oxford, 1981), 2nd English edn.

    Google Scholar 

  36. H.-J. Lenzen, Diploma Thesis, University of Cologne (1982).

  37. H.-J. Lenzen,Nuovo Cimento B 82, 85 (1984).

    Google Scholar 

  38. H.-J. Lenzen,Gen. Relativ Gravit. 17, 1137 (1985).

    Article  Google Scholar 

  39. M. Mathisson,Acta Phys. Pol. 6, 163 (1937).

    Google Scholar 

  40. J. D. McCrea,J. Phys. A 16, 997 (1983).

    Google Scholar 

  41. J. D. McCrea,Phys. Lett. A 100, 397 (1984).

    Article  Google Scholar 

  42. J. D. McCrea, “The Use of reduce in Finding Exact Solutions of the Quadratic Poincaré Gauge Field Equations,” inClassical General Relativity, W. B. Bonnor, J. N. Islam, and M. A. MacCallum, eds. (Cambridge University Press, Cambridge, 1984), p. 173.

    Google Scholar 

  43. J. D. McCrea, Invited lecture at the XIV International Conference on Differential Geometric Methods in Mathematical Physics, University of Salamanca, Spain, 1985).

    Google Scholar 

  44. E. W. Mielke, “Über die Hypothesen, welche der Geometrodynamik zugrunde liegen,” Habilitation thesis, University of Kiel, 1982.

  45. E. W. Mielke,J. Math. Phys. 25, 663 (1984).

    Article  Google Scholar 

  46. E. W. Mielke,Fortschr. Phys. 32, 639 (1984).

    Google Scholar 

  47. E. W. Mielke, English version of Ref. 44, to be published (Akademie Verlag, Berlin, 1986).

  48. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  49. F. Müller-Hoissen,Ann. Inst. H. Poincaré A 40, 21 (1984).

    Google Scholar 

  50. Y. Ne'eman, “Gravity, Groups and Gauges,” inGeneral Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein, A. Held, ed. (Plenum Press, New York), Vol. 1, Chap. 10.

  51. L. O'Raifeartaigh,Rep. Progr. Phys. 42, 159 (1979).

    Article  Google Scholar 

  52. A. Papapetrou,Proc. R. Soc. London A 209, 248 (1951).

    Google Scholar 

  53. D. A. Popov and L. I. Daikhin,Sov. Phys. Dokl. 20, 818 (1976).

    Google Scholar 

  54. J. A. Schouten,Ricci Calculus (Springer, Berlin, 1954), 2nd edn.

    Google Scholar 

  55. M. Schweizer and N. Straumann,Phys. Lett. A 71, 493 (1979).

    Article  Google Scholar 

  56. M. Schweizer, N. Straumann, and A. Wipf,Gen. Relativ. Gravit. 12, 951 (1980).

    Article  Google Scholar 

  57. D. W. Sciama, “On the Analogy between Charge and Spin in General Relativity,” inRecent Developments in General Relativity (Pergamon and PWN, Oxford, 1962), p. 415.

    Google Scholar 

  58. M. Seitz,Ann. Phys. (Leipzig) 41, 280 (1984).

    Google Scholar 

  59. M. Seitz,Class. Quantum Grav. 2, 919 (1985).

    Article  Google Scholar 

  60. W. Szczyrba,Phys. Rev. D 25, 2548 (1981).

    Article  Google Scholar 

  61. W. Thirring,A Course in Mathematical Physics, Vol. 2.Classical Field Theory (Springer, New York, 1979).

    Google Scholar 

  62. A. Trautman,Symp. Math. 12, 139 (1973).

    Google Scholar 

  63. A. Trautman, “Comments on a Paper by Elie Cartan,” in Ref. 5,. p. 493.

    Google Scholar 

  64. A. Trautman, “Fiber Bundles, Gauge Fields and Gravitation,” inGeneral Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein, A. Held, ed. (Plenum, New York, 1980), Vol. 1, Chap. 9, pp. 287–308.

    Google Scholar 

  65. A. Trautman,Differential Geometry for Physicists Stony Brook Lectures (Bibliopolis, Naples, 1984).

    Google Scholar 

  66. C. Truesdell and R. A. Toupin, “The Classical Field Theories,” inEncyclopedia of Physics III/1, S. Flügge, ed. (Springer, Berlin, 1960), p. 226.

    Google Scholar 

  67. R. Utiyama,Prog. Theor. Phys. 64, 2207 (1980).

    Google Scholar 

  68. R. P. Wallner,Gen. Relativ. Gravit. 12, 719 (1980).

    Article  Google Scholar 

  69. R. P. Wallner,Acta Phys. Aust. 55, 67 (1983).

    Google Scholar 

  70. R. P. Wallner,Gen. Relativ. Gravit. 17, 1081 (1985).

    Article  Google Scholar 

  71. J. A. Wheeler, “Gravitation as Geometry. II,” inGravitation and Relativity. H.-Y. Chiu and W. F. Hoffmann, eds. (Benjamin, New York, 1964).

    Google Scholar 

  72. J. A. Wheeler, “Particles and Geometry,” inLecture Notes in Physics (Springer-Verlag, New York, 1982), Vol. 160, p. 189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hehl, F.W., McCrea, J.D. Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories. Found Phys 16, 267–293 (1986). https://doi.org/10.1007/BF01889477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01889477

Keywords

Navigation