Skip to main content
Log in

Computational sequence analysis of matrix metalloproteinases

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMP) play a cardinal role in the breakdown of extracellular matrix involved in a variety of biological and pathological processes. Research on MMPs has classified and characterized these enzymes according to their matrix substrate specificity, gene and protein domain structure, and regulation of activity and expression. However, the discovery of new MMPs has introduced a need for a more comprehensive and systematic method of classification and quantitative comparison of known and newly discovered members. This study compiles a sequence alignment, constructs a dendrogram, and calculates physical data and homology percentage assignments in order to obtain further insight into MMP structure-function relationships. Thorough analysis of MMP primary sequence domains, physical data patterns, and statistical analysis of sequence homology yields higher resolution in the similarities and differences that group MMP members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aimes, R. T., and Quigley, J. P. (1995). Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4 and 1/4-length fragments,J. Biol. Chem. 270, 5872–5876.

    Article  CAS  PubMed  Google Scholar 

  • Ayad, S., Boot-Handford, R. P., Humphries, M. J., Kadler, K. E., and Shuttleworth, C. A. (1994).The Extracellular Matrix Factsbook, Academic Press, San Diego.

    Google Scholar 

  • Basset, P., Bellocq, J. P., Wolf, C., Stoll, I., Hutin, P., Limacher, J. M., Podhajcer, O. L., Chenard, M. P., Rio, M. C., and Chambon, P. (1990). A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas,Nature 348, 699–704.

    Article  CAS  PubMed  Google Scholar 

  • Baylis, H. A., Megson, A., Bloye, F., Brown, C. G. D., and Hall, R. (1994). Matrix metalloproteinase 9 production is induced by the presence of the protozoan parasiteTheileria annulata in leukocytes, Unpublished.

  • Birkedal-Hansen, B., Moore, W. G. I., Taylor, R. E., Bhown, A. S., and Birkedal-Hansen, H. (1988). Monoclonal antibodies to human fibroblast procollagenase. Inhibition of enzymatic activity, affinity purification of the enzyme, and evidence for clustering epitopes in the NH2-terminal end of the activated enzyme,Biochemistry 27, 6751–6758.

    Article  CAS  PubMed  Google Scholar 

  • Birkedal-Hansen, H., Moore, W. G. I., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J. A. (1993). Matrix metalloproteinases: A review,Crit. Rev. Oral Biol. Med. 4, 197–250.

    Article  CAS  PubMed  Google Scholar 

  • Bode, W., Reinemer, P., Huber, R., Kleine, T., Schnierer, S., and Tschesche, H. (1994). The x-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity,EMBO J. 13, 1263–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breathnach, R., Matrisian, L. M., Gesnel, M.-C., Staub, A., and Leroy, P. (1987). Sequences coding for part of oncogene-induced transin are highly conserved in a related rat gene,Nucleic Acids Res. 15, 1139–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browner, M. F., Smith, W. W., and Castelhano, A. L. (1995). Matrilysin-inhibitor complexes: Common themes among metalloproteases,Biochemistry 34, 6602–6610.

    Article  CAS  PubMed  Google Scholar 

  • Chan, J. C., Scanlon, M., Zhang, H., Jia, L., Yu, D., Hung, M., French, M., and Eastman, E. M. (1992). Molecular cloning and characterization of v-mos-activated transformation-associated proteins,J. Biol. Chem. 267, 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  • Chin, J. R., Murphy, G., and Werb, Z. (1985). Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates,J. Biol. Chem. 260, 12367–12376.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, N. J., O'Hare, M. C., Cawston, T. E., and Harper, G. P. (1990). Nucleotide sequence of a cDNA for porcine type I collagenase, obtained by PCR,Nucleic Acids Res. 18, 6703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier, I. E., Wilhelm, S. M., Eisen, A. Z., Marmer, B. L., Grant, G. A., Seltzer, J. L., Kronberger, A., He, C., Bauer, E. A., and Goldberg, G. I. (1988). H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen,J. Biol. Chem. 263, 6579–6587.

    Article  CAS  PubMed  Google Scholar 

  • Cottam, D. W., and Rees, R. C. (1993). Regulation of matrix metalloproteinases: Their role in tumor invasion and metastasis (review).Int. J. Oncol. 2, 861–872.

    CAS  PubMed  Google Scholar 

  • Crabbe, T., Ioannou, C., and Docherty, A. J. P. (1993). Human progelatinase A can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain,Eur. J. Biochem. 218, 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Crabbe, T., O'Connell, J. P., Smith, B. J., and Docherty, A. J. P. (1994a). Reciprocated matrix metalloproteinase activation: A process performed by interstitial collagenase and progelatinase A,Biochemistry 33, 14419–14425.

    Article  CAS  PubMed  Google Scholar 

  • Crabbe, T., Smith, B., O'Connell, J., and Docherty, A. (1994b). Human progelatinase A can be activated by matrilysin,FEBS Lett. 345, 14–16.

    Article  CAS  PubMed  Google Scholar 

  • Devarajan, P., Mookhtiar, K., Van Wart, H., and Berliner, N. (1991). Structure and expression of the cDNA encoding human neutrophil collagenase.Blood 77, 2731–2738.

    Article  CAS  PubMed  Google Scholar 

  • Devereux, J., Haeberli, P., and Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX,Nucleic Acids Res. 12, 387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, D.-F., and Doolittle, R. F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees,J. Mol. Evol. 25, 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Fini, M. E., Plucinska, I. M., Mayer, A. S., Gross, R. H., and Brinckerhoff, C. E. (1987). A gene for rabbit synovial cell collagenase: Member of a family of metalloproteinases that degrade the connective tissue matrix,Biochemistry 26, 6156–6165.

    Article  CAS  PubMed  Google Scholar 

  • Fosang, A. J., Neame, P. J., Last, K., Hardingham, T. E., Murphy, G., and Hamilton, J. A. (1992). The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B.J. Biol. Chem. 267, 19470–19474.

    Article  CAS  PubMed  Google Scholar 

  • Fosang, A. J., Last, K., Neame, P. J., Murphy, G., Knäuper, V., Tschesche, H., Hughes, C. E., Caterson, B., and Hardingham, T. E. (1994). Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373-A374 in the interglobular domain of cartilage aggrecan,Biochem. J. 304, 347–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freije, J. M. P., Díez-Itza, I., Balbín, M., Sánchez, L. M., Blasco, R., Tolivia, J., and López-Otín, C. (1994). Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas,J. Biol. Chem. 269, 16766–16773.

    Article  CAS  PubMed  Google Scholar 

  • Fridman, R., Toth, M., Peña, D., and Mobashery, S. (1995). Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2),Cancer Res. 55, 2548–2555.

    CAS  PubMed  Google Scholar 

  • Gill, S. C., and von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data.Anal. Biochem. 182, 319–326.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, G. I., Wilhelm, S. M., Kronberger, A., Bauer, E. A., Grant, G. A., and Eisen, A. Z. (1986). Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein,J. Biol. Chem. 261, 6600–6605.

    Article  CAS  PubMed  Google Scholar 

  • Gooley, P. R., O'Connell, J. F., Marcy, A. I., Cuca, G. C., Salowe, S. P., Bush, B. L., Hermes, J. D., Esser, C. K., Hagmann, W. K., Springer, J. P., and Johnson, B. A. (1994). The NMR structure of the inhibited catalytic domain of human stromelysin-1,Struct. Biol. 1, 111–118.

    Article  CAS  Google Scholar 

  • Gross, J., Harper, E., Harris, E. D., Jr., McCroskery, P. A., Highberger, J. H., Corbett, C., and Kang, A. H. (1974). Animal collagenases: Specificity of action and structures of the substrate cleavage site.Biochem. Biophys. Res. Commun. 61, 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Hammani, K., Henriet, P., and Eeckhout, Y. (1992). Cloning and sequencing of a cDNA encoding mouse stromelysin 1,Gene 120, 321–322.

    Article  CAS  PubMed  Google Scholar 

  • Hasty, K. A., Pourmotabbed, T. F., Goldberg, G. I., Thompson, J. P., Spinella, D. G., Stevens, R. M., and Mainardi, C. L. (1990). Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases,J. Biol. Chem. 265, 11421–11424.

    Article  CAS  PubMed  Google Scholar 

  • Higgins, D. G., and Sharp, P. M. (1989). Fast and sensitive multiple sequence alignments on a microcomputer.CABIOS 5, 151–153.

    CAS  PubMed  Google Scholar 

  • Henriet, P., Rousseau, G. G., and Eeckhout, Y. (1992). Cloning and sequencing of mouse collagenase cDNA. Divergence of mouse and rat collagenases from the other mammalian collagenases,FEBS Lett. 310, 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Holz, R. C., Salowe, S. P., Smith, C. K., Cuca, G. C., and Que, L., Jr. (1992). EXAFS evidence for a “cysteine switch” in the activation of prostromelysin,J. Am. Chem. Soc. 114, 9611–9614.

    Article  CAS  Google Scholar 

  • Huhtala, P., Eddy, R. L., Fan, Y. S., Byers, M. G., Showa, T. B., and Tryggvason, K. (1990). Completion of the primary structure of the human type IV collagenase preproenzyme and assignment of the gene (CLG4) to the q21 region of chromosome 16,Genomics 6, 554–559.

    Article  CAS  PubMed  Google Scholar 

  • Iami, K., Kusakabe, M., Sakakura, T., Nakanishi, I., and Okada, Y. (1994). Susceptibility of tenascin to degradation by matrix metalloproteinases and serine proteinases,FEBS Lett. 352, 216–218.

    Article  Google Scholar 

  • Lefebvre, O., Wolf, C., Limacher, J.-M., Hutin, P., Wendling, C., LeMeur, M., Basset, P., and Rio, M.-C. (1992). The breast cancer-associated stromelysin-3 gene is expressed during mouse mammary gland apoptosis,J. Cell. Biol. 119, 997–1002.

    Article  CAS  PubMed  Google Scholar 

  • Lepage, T., and Gache, C. (1990). Early expression of a collagenase-like hatching enzyme gene in the sea urchin embryo,EMBO J. 9, 3003–3012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovejoy, B., Hassell, A. M., Luther, M. A., Weigl, D., and Jordan, S. R. (1994). Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself,Biochemistry 33, 8207–8217.

    Article  CAS  PubMed  Google Scholar 

  • Knäuper, V., Wilhelm, S. M., Seperack, P. K., DeClerk, Y. A., Langley, K. E., Osthues, A., and Techesche, H. (1993). Direct activation of human neutrophil procollagenase by recombinant stromelysin,Biochem. J. 295, 581–586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mach, H., Middaugh, C. R., and Lewis, R. V. (1992). Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins,Anal. Biochem. 200, 74–80.

    Article  CAS  PubMed  Google Scholar 

  • Marti, H.-P., McNeil, L., Davies, M., Martin, J., and Lovett, D. H. (1993). Homology cloning of rat 72kDa type IV collagenase: Cytokine and second-messenger inductibility in glomerular mesangial cells,Biochem. J. 291, 441–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masure, S., Nys, G., Fiten, P., Van Damme, J., and Opdenakker, G. (1993). Mouse gelatinase B. cDNA cloning, regulation of expression and glycosylation in WEHI-3 macrophages and gene organization,Eur. J. Biochem. 218, 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Martisian, L. M. (1992). The matrix-degrading metalloproteinases,Bioessays 14, 455–463.

    Article  Google Scholar 

  • Matrisian, L. M., Glaichenhaus, N., Gesnel, M.-C., and Breathnach, R. (1985). Epidermal growth factor and oncogenes induce transcription of the same cellular mRNA in rat fibroblasts,EMBO J. 4, 1435–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, E. J., Harris, E. D., Jr., Chung, E., Finch, J. E., Jr., McCroskery, P. A., and Butler, W. T. (1976). Cleavage of type II and III collagens with mammalian collagenase: Site of cleavage and primary structure of the NH2-terminal portion of the smaller fragment released from both collagens,Biochemistry,15, 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki, K., Hattori, Y., Umenishi, F., Yasumitsu, H., and Umeda, M. (1990). Purification and characterization of extracellular matrix-degrading metalloproteinase, matrin (PUMP-1), secreted from human rectal carcinoma cell line,Cancer Res. 50, 7758–7764.

    CAS  PubMed  Google Scholar 

  • Muller, D., Quantin, B., Gesnel, M.-C., Millon-Collard, R., Abecassis, J., and Breathnach, R. (1988). The collagenase gene family in humans consists of at least four members,Biochem. J. 253, 187–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, G., Cockett, M. I., Stephens, P. E., Smith, B. J., and Docherty, A. J. P. (1987). Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes,Biochem. J. 248, 265–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, G., Cockett, M. I., Ward, R. V., and Docherty, A. J. P. (1991). Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan,Biochem. J. 277, 277–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, G., Segain, J.-P., O'Shea, M., Cockett, M., Ioannou, C., Lefebvre, O., Chambon, P., and Basset, P. (1993). The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase,J. Biol. Chem. 268, 15435–15441.

    Article  CAS  PubMed  Google Scholar 

  • Nagase, H. (1994). Matrix metalloproteinases. A mini-review,Contrib. Nephrol. 107, 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Nagase, H., Ogata, Y., Suzuki, K., Enghild, J. J., and Salvesen, G. (1991). Substrate specificities and activation mechanisms of matrix metalloproteinases,Biochem. Soc. Trans. 19, 715–718.

    Article  CAS  PubMed  Google Scholar 

  • Nagase, H., Barrett, A. J., and Woessner, J. F., Jr. (1992). Nomenclature and glossary of the matrix metalloproteinases. InMatrix Metalloproteinases and Inhibitors. Matrix Supplement No. 1 (Birkedal-Hansen, H., Werb, Z., Welgus, H. G., and Van Wart, H. E., eds.), Gustav Fischer Verlag, New York, pp. 421–424.

    Google Scholar 

  • Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins,J. Mol. Biol. 48, 443–453.

    Article  CAS  PubMed  Google Scholar 

  • Netzel-Arnett, S., Sang, Q.-X., Moore, W. G. I., Navre, M., Birkedal-Hansen, H., and Van Wart, H. E. (1993). Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (Matrilysin),Biochemistry 32, 6427–6432.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, Q., Murphy, G., Hughes, C. E., Mort, J. S., and Roughley, P. J. (1993). Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein,Biochem. J. 295, 595–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata, Y., Enghild, J. J., and Nagase, H. (1992). Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9,J. Biol. Chem. 267, 3581–3584.

    Article  CAS  PubMed  Google Scholar 

  • Okada, Y., Nagase, H., and Harris, E. D., Jr. (1986). A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization,J. Biol. Chem. 261, 14245–14255.

    Article  CAS  PubMed  Google Scholar 

  • Okada, Y., Konomi, H., Yada, T., Kimata, K., and Nagase, H. (1989). Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells,FEBS Lett. 244, 473–476.

    Article  CAS  PubMed  Google Scholar 

  • Patterton, D., Hayes, W. P., and Shi, Y.-B. (1995). Transcriptional activation of the matrix metalloproteinase gene stromelysin-3 coincides with thyroid hormone-induced cell death during frog metamorphosis,Dev. Biol. 167, 252–262.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, W. R., and Lipman, D. J. (1988). Improved tools for biological sequence comparison,Proc. Natl. Acad. Sci. USA 85, 2444–2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei, D., and Weiss, S. J. (1995). Furin-dependent intracellular activation of the human stromelysin-3 zymogen,Nature 375, 244–247.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, C. O., Scott, D. K., Brinckerhoff, C. E., Matrisian, L. M., Jeffrey, J. J., and Partridge, N. C. (1990). Rat collagenase. Cloning, amino acid sequence comparison, and parathyroid hormone regulation in osteoblastic cells,J. Biol. Chem. 265, 22343–22347.

    Article  Google Scholar 

  • Rechid, R., Vingron, M., and Argos, P. (1989). A new interactive protein sequence alignment program and comparison of its results with widely used algorithms,CABIOS 5, 107–114.

    CAS  PubMed  Google Scholar 

  • Reponen, P., Sahlberg, C., Huhtala, P., Hurskainen, T., Thesleff, I., and Tryggvason, K. (1992). Molecular cloning of murine 72-kDa type IV collagenase and its expression during mouse development,J. Biol. Chem. 267, 7856–7862.

    Article  CAS  PubMed  Google Scholar 

  • Sang, Q. A., Bodden, M. K., and Windsor, L. J. (1996). Activation of human progelatinase-A by collagenase and matrilysin; activation of procollagenase by matrilysin,J. Protein Chem., in press.

  • Sang, Q.-X., Birkedal-Hansen, H., and Van Wart, H. E. (1995). Proteolytic and non-proteolytic activation of human neutrophil progelatinase B,Biochim. Biophys. Acta,1251, 99–108.

    Article  PubMed  Google Scholar 

  • Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M. (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells,Nature 370, 61–65.

    Article  CAS  PubMed  Google Scholar 

  • Seltzer, J. L., Eisen, A. Z., Bauer, E. A., Morris, N. P., Glanville, R. W., and Burgeson, R. E. (1989). Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin,J. Biol. Chem. 264, 3822–3826.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, S. D., Griffin, G. L., Gilbert, D. J., Jenkins, N. A., Copeland, N. G., Welgus, H. G., Senior, R. M., and Ley, T. J. (1992). Molecular cloning, chromosomal localization and bacterial expression of a murine macrophage metalloelastase,J. Biol. Chem. 267, 4664–4671.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, S. D., Kobayashi, D. K., and Ley, T. J. (1993). Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages,J. Biol Chem. 268, 23824–23829.

    Article  CAS  PubMed  Google Scholar 

  • Sires, U. I., Griffin, G. L., Broekelmann, T. J., Mecham, R. P., Murphy, G., Chung, A. E., Welgus, H. G., and Senior, R. M. (1993). Degradation of entactin by matrix metalloproteinases. Susceptibility to matrilysin and identification of cleavage sites,J. Biol. Chem. 268, 2069–2074.

    Article  CAS  PubMed  Google Scholar 

  • Smith, T. F., and Waterman, M. S. (1981). Comparison of biosequences,Adv. Appl. Math. 2, 482–489.

    Article  Google Scholar 

  • Sneath, P. H. A., and Sokal, R. R. (1973). InNumerical Taxonomy, Freeman, San Francisco.

    Google Scholar 

  • Springman, E. B., Angleton, E. L., Birkedal-Hansen, H., and Van Wart, H. E. (1990). Multiple modes of activation of latent human fibroblast collagenase: Evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation,Proc. Natl. Acad. Sci. USA 87, 364–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetler-Stevenson, W. G., Liotta, L. A., and Kleiner, D. E., Jr. (1993). Extracellular matrix 6: Role of matrix metalloproteinases in tumor invasion and metastasis,FASEB J. 7, 1434–1441.

    Article  CAS  PubMed  Google Scholar 

  • Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F.-X., McKay, D. B., and Bode, W. (1995). The metzincins—Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases,Protein Sci. 4, 823–840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A., and Goldberg, G. I. (1995). Mechanism of cell surface activation of 72-kDa type IV collagenase,J. Biol. Chem. 270, 5331–5338.

    Article  CAS  PubMed  Google Scholar 

  • Takino, T., Sato, H., Yamamoto, E., and Seiki, M. (1995). Cloning of a human gene potentially encoding a novel matrix metalloproteinase having a C-terminal transmembrane domain.Gene 155, 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, M., Shimokawa, H., and Sasaki, S. (1994). Primary structure of bovine interstitial collagenase deduced from cDNA sequence,DNA Seq. 5, 63–66.

    Article  CAS  PubMed  Google Scholar 

  • Tezuka, K., Nemoto, K., Tezuka, Y., Sato, T., Ikeda, Y., Kobori, M., Kawashima, H., Eguchi, H., Hakeda, Y., and Kumegawa, M. (1994). Identification of matrix metalloproteinase 9 in rabbit osteoclasts,J. Biol. Chem. 269, 15006–15009.

    Article  CAS  PubMed  Google Scholar 

  • Van Wart, H. E. (1992). Human neutrophil collagenase. InMatrix Metalloproteinases and Inhibitors. Matrix Supplement No. 1 (Birkedal-Hansen, H., Werb, Z., Welgus, H. G., and Van Wart, H. E., eds.), Gustav Fischer Verlag, New York, pp. 31–36.

    Google Scholar 

  • Van Wart, H. E., and Birkedal-Hansen, H. (1990). The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family,Proc. Natl. Acad. Sci. USA 87, 5578–5582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Welgus, H. G., Fliszar, C. J., Seltzer, J. L., Schmid, T. M., and Jeffrey, J. J. (1990). Differential susceptibility of type X collagen to cleavage by two mammalian interstitial collagenases and 72-kDa type IV collagenase,J. Biol. Chem. 265, 13521–13527.

    Article  CAS  PubMed  Google Scholar 

  • Whitham, S. E., Murphy, G., Angel, P., Rahmsdorf, H.-J., Smith, B. J., Lyons, A., Harris, T. J. R., Reynolds, J. J., Herrlich, P., and Docherty, A. J. P. (1986). Comparison of human stromelysin and collagenase by cloning and sequence analysis,Biochem. J. 240, 913–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm, S. M., Collier, I. E., Marmer, B. L., Eisen, A. Z., Grant, G. A., and Goldberg, G. I. (1989). SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages,J. Biol. Chem. 264, 17213–17221.

    Article  CAS  PubMed  Google Scholar 

  • Willenbrock, F., Murphy, G., Phillips, I. R., and Brocklehurst, K. (1995). The second zinc atom in the matrix metalloproteinase catalytic domain is absent in the full-length enzymes: A possible role for the C-terminal domain,FEBS Lett. 358, 189–192.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, C. L., Heppner, K. J., Rudolph, L. A., and Matrisian, L. M. (1995). The metalloproteinase matrilysin is preferentially expressed in epithelial cells in a tissue-restricted pattern in the adult mouse,Mol. Biol. Cell. 6, 851–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woessner, J. F. Jr. (1991). Matrix metalloproteinases and their inhibitors in connective tissue remodeling,FASEB J. 5, 2145–2154.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J.-J., Lark, M. W., Chun, L. E., and Eyre, D. R. (1991). Sites of stromelysin cleavage in collagen types II, IX, X and XI of cartilage,J. Biol. Chem. 266, 5625–5628.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxiang Amy Sang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang, Q.A., Douglas, D.A. Computational sequence analysis of matrix metalloproteinases. J Protein Chem 15, 137–160 (1996). https://doi.org/10.1007/BF01887395

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01887395

Key words

Navigation