Skip to main content
Log in

Patterns and conformations of commonly occurring supersecondary structures (basic motifs) in protein data bank

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Short peptides connectingα-helices andβ-strands have been analyzed in 240 proteins refined at resolutions of 0.25 nm or better. Connecting peptides of lengths between one and five residues have been classified as part of supersecondary motifs of four types:αα, αβ, βα, andββ. Careful consideration has been given to the definition of secondary structures on the basis of hydrogen bonds and main-chain conformational angles. Using five classes of residue conformation—a, b, e, l, t—in the nonregular structure regions ofϕ, ψ space, 34 classes of supersecondary motifs occurring at least five times have been identified. Among these 34 classes, 11 classes that occur more than 25 times are commonly occurring supersecondary structure motifs. The patterns and conformations of the 11 commonly occurring supersecondary structure motifs have been characterized, demonstrating that patterns and conformations adopted by supersecondary structure motifs are limited. The results have relevance to structure prediction, comparative modeling, and protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977). The protein data bank: A computer-based archival file for macromolecule structures,J. Mol. Biol. 112, 535–542.

    Article  CAS  PubMed  Google Scholar 

  • Bllundell, T. L., Sibanda, B. L., Sternberg, M. J. E., and Thronton, J. M. (1987). Knowledge-based prediction of protein structures and the design of novel molecules,Nature 323, 347–352.

    Article  Google Scholar 

  • Blundell, T. L., Carney, D., Gardiner, S., Hayes, F., Howlin, B., Hubbard, T., Overington, J., Singh, D. A., Sibanda, L., and Stucliffe, M. (1988). Knowledge-based protein modeling and design,Eur. J. Biochem. 172, 513–520.

    Article  CAS  PubMed  Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1974). Prediction of protein conformation,Biochemistry 13, 222–245.

    Article  CAS  PubMed  Google Scholar 

  • Dyson, H. J., and Wright, P. E. (1993). Peptide conformation and protein folding,Curr. Opin. Struct. Biol. 3, 60–65.

    Article  CAS  Google Scholar 

  • Edwards, M. S., Sternberg, M. J., and Thornton, J. M. (1987). Structural and sequence patterns in the loops ofβαβ units,Protein Eng. 1, 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Efimov, A. V. (1982). Supersecondary structure ofβ-proteins,Mol. Biol. (Moscow)16, 799–806.

    CAS  PubMed  Google Scholar 

  • Efimov, A. V. (1986). Standard conformations of a poly-peptide chain in irregular regions of proteins,Mol. Biol. (Moscow)20, 250–260.

    CAS  PubMed  Google Scholar 

  • Efimov, A. V. (1991). Structure ofβ-β hairpin with short connections,Protein Eng. 4, 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Efimov, A. V. (1993). Patterns of loop regions in proteins,Curr. Opin. Struct. Biol. 3, 379–384.

    Article  CAS  Google Scholar 

  • Evans, S. V. (1993). SETOR: Hardware lighted three-dimensional solid model representations of macromolecules,J. Mol. Graphics 11, 134–138.

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap,Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Greer, J. (1990). Comparative modeling methods: Application to the family of the mammalian serine protease,Proteins Struct. Fund. Genet. 7, 317–337.

    Article  CAS  Google Scholar 

  • Huang, E. S., Subbiah, S., and Levitt, M. (1995). Recognizing native folds by the arrangement of hydrophobic and polar residues,J. Mol. Biol. 252, 709–720.

    Article  CAS  PubMed  Google Scholar 

  • Hubbard, T. J. P., and Blundell, T. L. (1987). Comparison of the solvent-inaccessible cores of homologous proteins: Definitions useful for protein modeling,Protein Eng. 1, 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Jones, T. H., and Thirup, S. (1986). Using known substructures in protein model building and crystallography,EMBO J. 5, 819–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogenbonded and geometrical features,Biopolymers 22, 2577–2637.

    Article  CAS  PubMed  Google Scholar 

  • Lim, V. I. (1974). Structural principles of globular organization of protein chains, A stereochemical theory of globular protein secondary structure,J. Mol. Biol. 88, 857–872.

    Article  CAS  PubMed  Google Scholar 

  • MacArthus, M. W., Laskowski, R. A., Moss, D. S., and Thornton, J. M. (1993). Computer program-PROCHECK: A program to check the seterochemical quality of protein structure,J. Appl. Cryst. 26, 283–291.

    Article  Google Scholar 

  • Morris, A. L., MacArthur, M. W., Hutchinson, E. G., Thornton, J. M.,et al. (1992). Stereochemical quality of protein structure coordinates,Proteins,12, 345–364.

    Article  CAS  PubMed  Google Scholar 

  • Overington, J., Donnelly, D., Johnson, M. S., Sali, A., and Blundell, T. L. (1992). Environment-specific amino acid substitution tables: Tertiary templates and prediction of protein fold,Protein Sci. 1, 216–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, J. S. (1981). The anatomy and taxonomy of protein structure,Adv. Protein Chem. 34, 167–339.

    Article  CAS  PubMed  Google Scholar 

  • Richmond, T. J., and Richards, F. M. (1978). Packing ofα-helices: Geometrical constraints and contact areas,J. Mol. Biol. 119, 537–555.

    Article  CAS  PubMed  Google Scholar 

  • Rooman, M. J., Rodriguez, J., and Wodak, S. J. (1990). Automatic definition of recurrent local structure motif in proteins,J. Mol. Biol. 213, 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Sali, A., and Blundell, T. L. (1990). Definition of general topological equivalence in protein structures,J. Mol. Biol. 212, 403–428.

    Article  CAS  PubMed  Google Scholar 

  • Scheerlinck, J. P. Y., Lasters, I., Claessens, M., De Maeyer, M., Pio, F., Drlhaise, P., and Wodak, S. J. (1992). Recurrentαβ lops in TIM barrel motifs show a distinct pattern of conserved structural featureProteins Struct. Funct. Genet. 12, 299–313.

    Article  CAS  PubMed  Google Scholar 

  • Sibanda, B. L., and Thornton, J. M. (1985).β-Hairpin families in globular proteins,Nature 316, 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Sibanda, B. L., and Thornton, J. M. (1993). Accommodating sequence changes inβ-hairpins in proteins,J. Mol. Biol. 229, 428–447.

    Article  CAS  PubMed  Google Scholar 

  • Sibanda, B. L., Blundell, T. L., and Thornton, J. M. (1989). Conformation ofβ-hairpins in protein structures. A systematic classification with applications to modeling by homology, electron density fitting and protein engineering,J. Mol. Biol. 206, 759–777.

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe, M. J., Haneef, I., Carney, D., and Blundell, T. L. (1987). Knowledge based modelling of homologous proteins, Part I,Protein Eng. 1, 377–384.

    Article  CAS  PubMed  Google Scholar 

  • Thornton, J. M., Sibanda, B. L., Edwanlo, M. S., and Barlow, D. J. (1988). Analysis, design, and modification of loop regions in proteins,Bioessays 8, 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Topham, C. M., Thomas, P., Overington, J. P., Johnson, M. S., Eisenmenger, F., and Blundell, T. L. (1990). An assessment of COMPOSER: A rule-based approach to modeling protein structure,Biochem Soc. Symp. 57, 1–9.

    CAS  PubMed  Google Scholar 

  • Topham, C. M., MacLeod, A., Eisenmenger, F., Overington, J. P., Johnson, M. S., and Blundell, T. L. (1993). Fragment ranking in modeling of protein structure,J. Mol. Biol. 229, 194–220.

    Article  CAS  PubMed  Google Scholar 

  • Unger, R., and Sussman, J. L. (1993). The importance of short structural motifs in protein structure analysis,J. Comp. Aided Mol. Des. 7, 457–472.

    Article  CAS  Google Scholar 

  • West, M., and Hecht, M. (1995). Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins,Protein Sci. 4, 2032–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmot, C. M., and Thornton, J. M. (1988). Analysis and prediction of the differnt types of β-turn in proteins,J. Mol. Biol. 203, 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z. Y., Sali, A., and Blundell, T. L. (1992). A variable gap penalty function and feature weights for protein 3-D structure comparisons,Protein Eng. 5, 43–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Jiang, B. Patterns and conformations of commonly occurring supersecondary structures (basic motifs) in protein data bank. J Protein Chem 15, 675–690 (1996). https://doi.org/10.1007/BF01886750

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01886750

Key words

Navigation