Skip to main content
Log in

Der Phototropismus und das lichtabhängige Längenwachstum des Hypokotyls vonSinapis alba L.

  • Published:
Planta Aims and scope Submit manuscript

Summary

Lengthening of the hypocotyl ofSinapis alba L. is mainly controlled by the longer wave lengths of visible radiation, whereas a phototropic curvature of the hypocotyl can only be induced by the shorter wave lengths of visible radiation. In all regions of the visible spectrum inhibition of hypocotyl lengthening is due exclusively to an inhibition of cell lengthening.

The main question is why no bending occurs with unilateral visible radiation at longer wave lengths in spite of the fact that the reaction is not saturated, and that a strong gradient of radiation exists between the light side and the shaded side of the hypocotyl.

A hypothesis has been presented to explain these facts. It has been assumed that long wave length visible light reduces the level of endogenus gibberellins. It is known from the literature that in stems of many plants gibberellic acid is translocated laterally so rapidly after an unilateral application that the compound induces the entire stem to elongate more or less uniformly without pronounced curvature. In this way it is understandable that unilateral visible radiation at longer wave lengths reduces the level of endogenous gibberellic acid without inducing a curvature. On the other hand the effect of unilateral blue light remains localized and is not translocated. A curvature is the result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Blaauw, A. H.: Licht und Wachstum II. Z. Bot.7, 465–532 (1915).

    Google Scholar 

  • Bünning, E.: Phototropismus und Carotinoide. III. Weitere Untersuchungen an Pilzen und höheren Pflanzen. Planta (Berl.)27, 583–610

  • Buy, H. G. du, u.E. Nuernbergk: Phototropismus und Wachstum der Pflanzen. Ergebn. Biol.9, 358–544 (1932);10, 207–322 (1934);12, 325–543 (1935).

    Google Scholar 

  • Delbrück, M., andW. Shropshire: Action and transmission spectra ofPhycomyces. Plant Physiol.35, 194–204 (1960).

    Google Scholar 

  • Lockhart, J. A.: Reversal of the light inhibition of the pea stem growth by the gibberellins. Proc. nat. Acad. Sci. (Wash.)42, 841–848 (1956).

    Google Scholar 

  • —: Studies on the mechanism of stem growth inhibition by visible radiation. Plant Physiol.34, 457–460 (1959).

    Google Scholar 

  • Lockhart, J. A.: Persönliche Mitteilung 1960a.

  • —: Intracellular mechanism of growth inhibition by radiant energy. Plant Physiol.35, 129–135 (1960b).

    Google Scholar 

  • Lockhart, J. A., andV. Gottschall: Growth responses of Alaska pea seedlings to visible radiation and gibberellic acid. Plant Physiol.34, 460–465 (1959).

    Google Scholar 

  • Mitchell, J. W., I. R. Schneider andH. G. Gauch: Translocations of particles within plants. Science131, 1863–1870 (1960).

    PubMed  Google Scholar 

  • Mohr, H.: Die Abhängigkeit des Protonemawachstums und der Protonemapolarität bei Farnen vom Licht. Planta (Berl.)47, 127–158 (1956).

    Google Scholar 

  • —: Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypokotyls und auf die Anthocyanbildung bei Keimlingen vonSinapis alba L. (=Brassica alba Boiss.). Planta (Berl.)49, 389–405 (1957).

    Google Scholar 

  • —: Der Lichteinfluß auf die Haarbildung am Hypokotyl vonSinapis alba L. Planta (Berl.)53, 109–124 (1959a).

    Google Scholar 

  • —: Der Lichteinfluß auf das Wachstum der Keimblätter beiSinapis alba L. Planta (Berl.)53, 219–245 (1959b).

    Google Scholar 

  • —: Photomorphogenetische Reaktionssysteme in Pflanzen. 2. Teil: Der Einfluß kurzwelligen Lichts auf Wachstum und Entwicklung. Ergebn. Biol.23, 47–93 (1960).

    Google Scholar 

  • —, u.G. Schoser: Eine Interferenzfilter-Monochromatoranlage für photobiologische Zwecke. Planta (Berl.)53, 1–17 (1959).

    Google Scholar 

  • Romeis, B.: Mikroskopische Technik. München: Leibniz 1948.

    Google Scholar 

  • Schultz-Brauns, O.: Eine neue Methode des Gefrierschneidens für histologische Schnelluntersuchungen. Klin. Wschr.10, 113–116 (1931).

    Google Scholar 

  • —: Verbesserungen und Erfahrungen bei Anwendung der Methode des Gefrierschneidens unfixierter Gewebe. Zbl. allg. Path. path. Anat.54, 225–234 (1932).

    Google Scholar 

  • Shropshire, W., andR. B. Withrow: Action spectrum of phototropic tip-curvature ofAvena. Plant Physiol.33, 360–365 (1958).

    Google Scholar 

  • Specht, I.: Die phototropische Inversion dikotyler Keimlinge in ölartigen Medien. Flora (Jena)149, 106–161 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 6 Textabbildungen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohr, H., Peters, E. Der Phototropismus und das lichtabhängige Längenwachstum des Hypokotyls vonSinapis alba L.. Planta 55, 637–646 (1960). https://doi.org/10.1007/BF01884806

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01884806

Navigation