Skip to main content
Log in

Electron paths, tunnelling, and diffraction in the spacetime algebra

  • Part II. Invited Papers Dedicated To David Hestenes
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper employs the ideas of geometric algebra to investigate the physical content of Dirac's electron theory. The basis is Hestenes' discovery of the geometric significance of the Dirac spinor, which now represents a Lorentz transformation in spacetime. This transformation specifies a definite velocity, which might be interpreted as that of a real electron. Taken literally, this velocity yields predictions of tunnelling times through potential barriers, and defines streamlines in spacetime that would correspond to electron paths. We also present a general, first-order diffraction theory for electromagnetic and Dirac waves. We conclude with a critical appraisal of the Dirac theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Gull, A. N. Lasenby, and C. J. L. Doran, “Imaginary numbers are not real—the geometric algebra of spacetime,”Found. Phys. 23(9), 1175 (1993).

    Google Scholar 

  2. C. J. L. Doran, A. N. Lasenby, and S. F. Gull, “States and operators in the spacetime algebra,”Found. Phys. 23(9), 1239 (1993).

    Google Scholar 

  3. A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “A multivector derivative approach to Lagrangian field theory,”Found. Phys. 23(10), 1295 (1993).

    Google Scholar 

  4. D. Hestenes, “Vectors, spinors, and complex numbers in classical and quantum physics,”Am. J. Phys. 39, 1013 (1971).

    Google Scholar 

  5. D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,”J. Math. Phys. 16(3), 556 (1975).

    Google Scholar 

  6. D. Hestenes, “Clifford algebra and the interpretation of quantum mechanics,” in J. S. R. Chisholm and A. K. Common, eds.,Clifford Algebras and Their Applications in Mathematical Physics (Reidel, Dordrecht, 1986), p. 321.

    Google Scholar 

  7. D. Hestenes, “Real Dirac theory,” in preparation, 1993.

  8. D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966).

    Google Scholar 

  9. D. Hestenes, “Proper dynamics of a rigid point particle,”J. Math. Phys. 15(10), 1778 (1974).

    Google Scholar 

  10. D. Hestenes, “On decoupling probability from kinematics in quantum mechanics,” in P. Fougère, ed.,Maximum Entropy and Bayesian Methods (Kluwer Academic, Dordrecht, 1990), p. 161.

    Google Scholar 

  11. D. Bohm and B. J. Hiley, “Unbroken quantum realism, from microscopic to macroscopic levels,”Phys. Rev. Lett. 55, 2511 (1985).

    Google Scholar 

  12. C. R. Leavens, “Transmission, reflection, and dwell times within Bohm's causal interpretation of quantum mechanics,”Solid State Commun. 74(9), 923 (1990).

    Google Scholar 

  13. C. R. Leavens, “Traversal times for rectangular barriers within Bohm's causal interpretation of quantum mechanics,”Solid State Commun. 76(3), 253 (1990).

    Google Scholar 

  14. J.-P. Vigier, C. Dewdney, P. R. Holland, and A. Kyprianidis, “Causal particle trajectories and the interpretation of quantum mechanics,” in B. J. Hiley and F. D. Peat, eds.,Quantum Implications (Routledge, London, 1987), p. 169.

    Google Scholar 

  15. P. A. M. Dirac, “A theory of electrons and protons,”Proc. R. Soc. London A 126, 360 (1930).

    Google Scholar 

  16. D. Bohm, R. Schiller, and J. Tiomno, “A causal interpretation of the Pauli equation,”Nuovo Cimento Suppl. 1, 48 (1955).

    Google Scholar 

  17. C. Dewdney, P. R. Holland, A. Kypriandis, and J. P. Vigier, “Spin and non-locality in quantum mechanics,”Nature (London) 336, 536 (1988).

    Google Scholar 

  18. D. Hestenes, “Spin and uncertainty in the interpretation of quantum mechanics,”Am. J. Phys. 47(5), 399 (1979).

    Google Scholar 

  19. D. Hestenes, “Local observables in the Dirac theory,”J. Math. Phys. 14(7), 893 (1973).

    Google Scholar 

  20. E. H. Hauge and J. A. Støvneng, “Tunneling times: A critical review,”Rev. Mod. Phys. 61(4), 917 (1989).

    Google Scholar 

  21. J. O. Hirschfelder, A. C. Christoph, and W. E. Palke, “Quantum mechanical streamlines. I. Square potential barrier,”J. Chem. Phys. 61(12), 5435 (1974).

    Google Scholar 

  22. T. P. Spillar, T. D. Clark, R. J. Prance, and H. Prance, “Barrier traversal time in the quantum potential picture,”Europhys. Lett. 12(1), 1 (1990).

    Google Scholar 

  23. J. D. Jackson,Classical Electrodynamics, 2nd edn. (Wiley, New York, 1976).

    Google Scholar 

  24. M. Born and E. Wolf,Principles of Optics (Pergamon Press, Oxford, 1959).

    Google Scholar 

  25. S. F. Gull, “Charged particles at potential steps,” in A. Weingartshofer and D. Hestenes, eds.,The Electron (Kluwer Academic, Dordrecht, 1991), p. 37.

    Google Scholar 

  26. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics, Vol. 1 (McGraw-Hill, New York, 1964).

    Google Scholar 

  27. O. Klein,Z. Phys. 53, 157 (1929).

    Google Scholar 

  28. L. E. Ballentine, “The statistical interpretation of quantum mechanics,”Rev. Mod. Phys. 42(4), 358 (1970).

    Google Scholar 

  29. J. A. Wheeler and R. P. Feynman, “Classical electrodynamics in terms of direct interparticle action,”Rev. Mod. Phys. 21(3), 425 (1949).

    Google Scholar 

  30. J. A. Wheeler and R. P. Feynman, “Interaction with the absorber as the mechanism of radiation,”Rev. Mod. Phys. 17, 157 (1945).

    Google Scholar 

  31. J. G. Cramer, “The transactional interpretation of quantum mechanics,”Rev. Mod. Phys. 58(3), 647 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a SERC studentship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gull, S., Lasenby, A. & Doran, C. Electron paths, tunnelling, and diffraction in the spacetime algebra. Found Phys 23, 1329–1356 (1993). https://doi.org/10.1007/BF01883782

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883782

Keywords

Navigation