Skip to main content
Log in

Pharmacokinetics and immunomodulatory effects on monocytes during prolonged therapy with liposomal muramyltripeptide

  • Published:
Biotherapy

Abstract

The macrophage activator muramyl tripeptide-phosphatidyl ethanolamine (MTP-PE) was infused in liposomal form in 14 metastatic cancer patients (4 mg i.v. during 30 min twice weekly for 12 weeks). Clinical, pharmacokinetic and immunological parameters were studied before and 0.5, 2, 4, 24 and 72h after start of drug infusion in week 1, 4, 8 and 12. No tumor regressions were seen. Tumors progressed in 11 patients, in 4 of them within 2 months; 3 patients had stable disease. The intensity and frequency of side effects (fever and nausea) diminished from week 1 to 12. The rate of disappearance of total and free MTP-PE from blood was rapid and mean serum concentration-time curves remained unchanged throughout 12 study weeks. MTP-PE caused a marked increase of serum TNFa, IL-1 receptor antagonist (IL-1ra) and IL-6 in week 1, but not thereafter. In contrast, MTP-PE caused a persistent, 2-fold increase in serum neopterin and young forms of granulocytes (bands) during week 1 to 12. Before therapy, monocyte tumor cytotoxicity and in-vitro monocyte derived TNFa, IL-1Β and IL-6 production were low in 9 patients (group L, <15%) and high in 5 patients (group H, >40%). Monocyte cytotoxicity and in-vitro cytokine production was transiently enhanced in week 1 in group L, it declined under therapy in group H. In conclusion, MTP-PE induced marked initial immunomodulation; the extent of the ex vivo monocyte cytokine and tumor cytotoxic response was dependent on pretherapy cell activity. A decrease of the cytokine and IL-1ra response during prolonged therapy contrasted with a persistent increase of neopterin and juvenile blood granulocytes. The long lasting biologic effects may be relevant to direct future clinical studies with liposomal MTP-PE in an adjuvant setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MTP-PE:

muramyl tripeptide-phosphatidyl ethanolamine

IL-1ra:

IL1 receptor antagonist

TNFa:

tumor necrosis factor alpha

IL-1Β :

interleukin-1 beta

IL-6:

interleukin 6

References

  1. Lederer E, Adam A, Ciorbaru R, Petit JF, and Wietzerbin J Cell walls of mycobacteria and related organisms; chemistry and immunostimulant properties. J Mol Cell Biochem 1975; 7: 87–104.

    Google Scholar 

  2. Ellouz F, Adam A, Ciorbaru R, and Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun 1974; 59: 1317–1325.

    PubMed  Google Scholar 

  3. Adam A, and Lederer E. Muramylpeptides: Immunomodulators, sleep factors, and vitamins. Med Res Rev 1984; 4: 111–152.

    PubMed  Google Scholar 

  4. Lopez-Berestein G, Mehta K, Mehta R, Juliano RL, and Hersh EM. The activation of human monocytes by muramylpeptide analogues. J Immunol 1983; 130: 1500–1502.

    PubMed  Google Scholar 

  5. Salem P, Deryckx S, Dulioust A, Vivier E, Denizot Y, Damais Ch, Dinarello Ch, and Thomas Y. Immunoregulatory functions of PAF-acether. IV. Enhancement of IL-1 production by muramyldipeptide stimulated monocytes. J Immunol 1990; 144: 1838–1344.

    Google Scholar 

  6. Juy D, and Chedid L. Comparison between macrophage activation and enhancement of non specific resistance to tumors by mycobacterial immunoadjuvants. Proc Natl Acad Sci USA 1975; 72: 4105–4109.

    PubMed  Google Scholar 

  7. Sone S, Tachibana K, Shono M, Ogushi F, and Tsubura E. Potential value of liposomes containing muramyl dipeptide for augmenting the tumoricidal activity of human alveolar macrophages. J Biol Response Mod 1984; 3: 185–194.

    PubMed  Google Scholar 

  8. Fogler WE, and Fidler IJ. The activation of tumoricidal properties of human blood monocytes by muramyl dipeptide requires specific intracellular interaction. J Immunol 1986; 136: 2311–2317.

    PubMed  Google Scholar 

  9. Fidler IJ, Sone S, Fogler WE, Smith D, Braun DG, Tarcsay L, Gisler RG, and Schroit AJ. Efficacy of liposomes containing a lipophilic muramyl dipeptide derivative for activating the tumoricidal properties of alveolar macrophages in vivo. J Biol Response Mod 1982; 1: 43–55.

    Google Scholar 

  10. Parant M, Parant F, Chedid L, Yapo A, Petit JF, and Lederer E. Fate of the synthetic immunoadjuvant muramyl dipeptide (14C labelled) in the mouse. Int J Immunopharmacol 1979; 1: 35–41.

    PubMed  Google Scholar 

  11. Fogler WE, Wade R, Brundish DE, and Fidler IJ. Distribution and fate of free and liposome encapsulated [3H] nor-muramyl dipeptide and [3H] muramyl tripeptide phosphatidylethanolamine in mice. J Immunol 1985; 135: 1372–1377.

    PubMed  Google Scholar 

  12. Sone S, Mutsura S. Ogawara M, and Tsubura E. Potentiating effect of muramyldipeptide and its lipophilic analog encapsulated in liposomes in tumor cell killing by human monocytes. J Immunol 1984; 132: 2105–2110.

    PubMed  Google Scholar 

  13. Sone S, and Tsubura E. Human alveolar macrophages: potentiation of their tumoricidal activity by liposomeencapsulated muramyldipeptide. J Immunol 1982; 129: 1313–1317.

    PubMed  Google Scholar 

  14. Fidler IJ, Sone S, Fogler WE, and Barnes ZL. Eradication of spontaneous metastases and activation of alveolar macrophages by intravenous injection of liposomes containing muramyldipeptide. Proc Natl Acad Sci USA 1981; 78: 1680–1684.

    PubMed  Google Scholar 

  15. Fogler WE, and Fidler IJ. Comparative interaction of free and liposome-encapsulated nor-muramyl dipeptide or muramyl tripeptide phosphatidylethanolamine (3H-labelled) with human blood monocytes. Int J Immunopharmacol 1987; 9: 141–150.

    PubMed  Google Scholar 

  16. Kleinerman E, Erickson KL, Schroit A, Fogler WE, and Fidler IJ. Activation of tumoricidal properties in human blood monocytes by liposomes containing lipophilic muramyltripeptide. Cancer Res 1983; 2010–2014.

  17. Sone S, Utsugi T, Tandon P, and Ogawara M. A dried preparation of liposomes containing muramyl tripeptide phosphatidylethanolamine as a potent activator of human blood monocytes to the antitumor state. Cancer Immunol Immunother 1986; 22: 191–196.

    PubMed  Google Scholar 

  18. Fidler IJ, Fogler WE, Brownbill AF, and Schumann G. Systemic activation of tumoricidal properties in mouse macrophages and inhibition of melanoma metastases by the oral administration of MTP-PE, a lipophilic muramyl dipeptide. J. Immunol 1987; 138: 4509–4514.

    PubMed  Google Scholar 

  19. Mac Ewen EG, Kurzman ID, Rosenthal RC, Smith BW, Manley PA, Roush JK, and Howard PE. Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J Nat Cancer Inst 1989; 81: 935–938.

    PubMed  Google Scholar 

  20. Murray J, Kleinerman E, Cunningham JE, Tatom JR, Andrejcio K, Lepe-Zuniga J, Lamki LM, Rosenblum MG, Frost H, Guttermann JU, Fidler IJ, and Krakoff IH. Phase I trial of liposomal muramyl tripeptide phosphatidylethanolamine. J Clin Oncology 1989; 7: 1915–1935.

    Google Scholar 

  21. Urba WJ, Hartmann LC, Longo DL, Steis RG, Smith JW, Kedar I, Creekmore St, Sznol M, Conlon K, Kopp WC, Huber Ch, Herold M, Alvord GW, Snow S, Clark JW. Phase I and immunomodulatory study of a muramylpeptide, muramyltripeptide phosphatidylethanolamine. Cancer Res 1990; 50: 2979–2986.

    PubMed  Google Scholar 

  22. Creaven PJ, Cowens JW, Brenner DE, Dadey BM, Han T, Huben R, Karakousis C, Frost H, Lesher D, Hanagan J, Andreicio K, and Cushman KM. Initial clinical trial of the macrophage activator MTP-PE encapsulated in liposomes in patients with advanced cancer. J Biol Response Mod 1990; 9: 492–498.

    PubMed  Google Scholar 

  23. Faradji A, Bohbot A, Frost H, Schmitt-Gocguel M, Siffert JC, Dufour P, Eber JL, Lallot C, Wiesel ML, Bergerat JP, and Oberling F. Phase I study of liposomal MTP-PE activated autologous monocytes administered intraperitoneally to patients with peritoneal carcinomatosis. J Clin Oncology 1991; 9: 1251–1260.

    Google Scholar 

  24. Frohmüller S, Schlag P. Dueck M, Betzler M, Friederich P, Bradbury I, and Frost H. Clinical and biological response in patients with metastatic colorectal cancer treated with MTP-PE in liposomes: Results of a phase-II-study. Proceedings American Soc Clin Oncology 1991; 10: 156.

    Google Scholar 

  25. Diana D, Body JJ, Markjewicz E, and Sculier JP. High serum levels of TNFa induced by muramyl tripeptidephosphatidyl ethanolamine treatment in non small cell lung cancer patients. Sixth Europ J Cancer Suppl 1991; 2: 5223.

    Google Scholar 

  26. Liebes L, Walsh CM, Chachoua A, Oratz R, Richards D, Hochster H, Peace D, Marino D, Alba S, Le Sher D, Blum R, and Vilcek, J. Modulation of monocyte functions by muramyl tripeptide-phosphatidylethanolamine in a phase II study in patients with metastatic melanoma. J Nat Cancer Inst 1992; 84: 694–699.

    PubMed  Google Scholar 

  27. Kleinerman ES, Raymond AK, Bucana CD, Jaffe N, Harris MB, Krakoff IH, Benjamin R, and Fidler JI. Unique histological changes in lung metastases of osteosarcoma patients following therapy with liposomal muramyl tripeptide (CGP 19835A Lipid). Cancer Immunol Immunother 1992; 34: 211–220.

    PubMed  Google Scholar 

  28. Kleinerman ES, Jia SF, Griffin J, Seibel NL, Benjamin RS, Jaffe N: Phase II study of liposomal muramyl tripeptide in osteosarcoma: the cytokine cascade and monocyte activation following administration. J Clin Oncol 1992; 10: 1310–1316.

    PubMed  Google Scholar 

  29. Zubrod GC. Appraisal of methods for the study of chemotherapy in man: Comparative therapeutic trial of nitrogen mustard and methylene thiophosphoramide. J Chron Dis 1960; 11: 7–33.

    Google Scholar 

  30. Gay B, Towbin H, Schnell C, Einsle K, Graf P, and Gygax D. Direct chemiluminescence immunoassay (CLIA) for muramyltripeptide phosphatidyl ethanolamine in plasma. J Biolumin Chemolumin 1991; 6: 73–80.

    Google Scholar 

  31. Rordorf-Adam C, Lazdins J, Woods-Cook K, Alteri E, Henn R, Geiger T, Feige U, Towbin H, and Erard F. An assay for the detection of IL-1 synthesis inhibitors: Effects of antirheumatic drugs., Drugs Expl Clin Res 1989; 15: 355–362.

    Google Scholar 

  32. Aarden LA, De Groot ER, Schaap OL, and Lansdorp PM. Production of hybridoma growth factor by human monocytes. Eur J Immunol 1987; 17: 1411–1416.

    PubMed  Google Scholar 

  33. Green LM, Reade JL, and Ware CF. Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines. J Immunol Methods 1984; 70: 257–268.

    PubMed  Google Scholar 

  34. Gmelig-Meyling F, and Waldmann TA. Separation of human blood monocytes and lymphocytes on a continuous percoll gradient. J Immunol Methods 1980; 33: 1–9.

    PubMed  Google Scholar 

  35. Landmann R, Ludwig C, Denz H, Fisscher A, Wesp M, Knüsli W, Obrist R, and Obrecht JP. Prolonged administration of recombinant interferon-gamma by subcutaneous infusion in cancer patients: Differential effect on serum CD14, neopterin and monocyte HLA class I and II antigens. J Interferon Res 1992; 12: 103–111.

    PubMed  Google Scholar 

  36. Schindler R, Macnilla J, Endres S, Ghorbani R, Clark SC, and Dinarello CA. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNFa) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990; 75: 40–47.

    PubMed  Google Scholar 

  37. Helle M, Brakenhoff JPJ, De Groot ER, and Aarden LA. Interleukin-6 is involved in interleukin-1 induced activities. Eur J Immunol 1988; 18: 957–959.

    PubMed  Google Scholar 

  38. Frost H, Murray J, Chaudri HA, and Van Damme J. Interleukin-6 induction by a muramyltripeptide derivative in cancer patients. J Biol Response Mod 1990; 9: 160–166.

    PubMed  Google Scholar 

  39. Mathison JC, Virca GD, Wolfson E, Tobias PS, Glaser K, and Ulevitch RJ. Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide induced tumor necrosis factor production in rabbit macrophages. J Clin Invest 1990; 85: 1108–1118.

    PubMed  Google Scholar 

  40. Madonna GS, and Vogel St. Early endotoxin tolerance is associated with alterations in bone marrow-derived macrophage precursor pools. J Immunol 1985; 135: 3763–3771.

    PubMed  Google Scholar 

  41. Zuckerman StH, Evans GF, Snyder YM, and Roeder WD. Endotoxin-macrophage interaction: posttranslational regulation of tumor necrosis factor expression. J Immunol 1989; 143: 1223–1227.

    PubMed  Google Scholar 

  42. Mackensen A, Galanos Ch, and Andreesen R. Modulating activity of interferon-gamma on endotoxin-induced cytokine production in cancer patients. Blood 1991; 78: 3254–3258.

    PubMed  Google Scholar 

  43. Tandon P, Utsugi T, and Sone S. Lack of production of IL-1 by human blood monocytes activated to the antitumor state by liposome-enriched Muramyl Tripeptide Cancer Res 1986; 46: 5039–5044.

    PubMed  Google Scholar 

  44. Arend WP, Smith MF, Janson RW, and Joslin FG. IL-1 receptor antagonist and IL-1Βf production in human monocytes are regulated differently. J Immunol 1991; 147: 1530–1536.

    PubMed  Google Scholar 

  45. Dinarello CA, and Thompson RC. Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol Today 1992; 12: 404–410.

    Google Scholar 

  46. Galelli A, and Chedid L. Induction of colony stimulating activity (CSA) by a synthetic muramyl peptide (MDP): Synergism with LPS and activity in C3H/HeJ mice and in endotoxin tolerized mice. J Immunol 1986; 137: 3211–3215.

    PubMed  Google Scholar 

  47. Quill H, Gaur H, and Phipps RP. Prostaglandin E 2 dependent induction of granulocyte-macrophage colony stimulating factor secretion by cloned murine T helpter cells. J Immunol 1989; 142: 813–818.

    PubMed  Google Scholar 

  48. Huber Ch, Batchelor JR, Fuchs D. Hausen A, Lang A, Niederwieser D, Reibnegger G, Swetly P, Troppmair J, and Wachter H. Immune response associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J Exp Med 1984; 160: 310–316.

    PubMed  Google Scholar 

  49. Schödon G, Troppmair S, Adolf G, Huber Ch, and Niederwieser A. Interferon-gamma enhances biosynthesis of pteridines in peripheral blood mononuclear cells by induction of GTP-Cyclohydrolase I activity. J Interferon Res 1986; 6: 697–703.

    PubMed  Google Scholar 

  50. Troppmair J, Nachbaur K, Herold M, Aulitzki W, Tilg H, Gastl G, Bieling P, Kotlan B, Flener R, Mull B, Aulitzky O, Rokos H, and Huber Ch. In-vitro and in-vivo studies on the induction of neopterin biosynthesis by cytokines, alloantigens and lipopolysaccharide (LPS). Clin Exp Immunol 1988; 74: 392–397.

    PubMed  Google Scholar 

  51. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, and Wachter H. Tumor necrosis factor-alpha and lipopolysaccharide enhance interferon-induced tryptophan degradation and pteridine synthesis in human cells. Chem. Hoppe-Seiler 1989; 370: 1063–1069.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landmann, R., Obrist, R., Denz, H. et al. Pharmacokinetics and immunomodulatory effects on monocytes during prolonged therapy with liposomal muramyltripeptide. Biotherapy 7, 1–12 (1993). https://doi.org/10.1007/BF01878149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01878149

Key words

Navigation