Skip to main content
Log in

Interferons and the tumor cell

  • Published:
Biotherapy

Abstract

Optimal use of interferons (IFNs) for the treatment of tumor disease requires experimental work in order to precisely define IFN actions. We have pointed out three modes of such actions relevant for the antitumor efficacy exerted by IFNs: effects on apoptosis, effects on genes involved in malignant transformation and effects on angiogenesis. These are but three selected areas forming a basis for the development of optimal IFN therapy. Further experimental work, undertaken in these and additional IFN areas, is mandatory for the most effective clinical use of IFNs for the treatment of tumor disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IFN:

interferon

FGF:

basic fibroblast growth factor

References

  1. Alberts B, Bray D, Lewis J,et al. Molecular biology of the cell. Third ed. New York: Garland Publ, Inc, 1994.

    Google Scholar 

  2. Allen NC, Richards S, Sheperd P. Interferon-α and the maintenance of thechronic phase in CML. 2nd Intern Symp on Lymphoblastoidα-Interferons, Barcelona, October 21–22, 1994: 47.

  3. Baron S, Coppenhaver DH, Dianzani F,et al., eds. Interferon: Principles and medical applications. The University of Texas Medical Branch at Galveston (1992).

    Google Scholar 

  4. Bishop JM. The molecular genetics of cancer. Science 1987; 235: 305–11.

    PubMed  Google Scholar 

  5. Brem H, Gresser I, Grosfeld J, Folkman J. The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. J Pediat Surg 1993; 8: 1253–7.

    Google Scholar 

  6. Brenning G, Åhre A, Nilsson K. Correlation betweenin vitro andin vivo sensitivity to human leukocyte interferon in patients with multiple myeioma. Scand J Haematol 1985; 35: 543–9.

    PubMed  Google Scholar 

  7. Brouty-Boyé D, Zetter BR. Inhibition of cell mobility by interferon. Sciene 1980; 208: 516–8.

    Google Scholar 

  8. Byhardt RW. Can interferon beta make the radiation therapy team for treatment of non-small cell lung cancer? Int J Radiation Oncology Biol Phys 1993; 27: 753–6.

    Google Scholar 

  9. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265: 1582–4.

    PubMed  Google Scholar 

  10. De Maeyer E, De Maeyer-Guignard J. Interferon and other regulatory cytokines. New York: John Wiley & Sons, 1988.

    Google Scholar 

  11. Dmitrovsky E, Bosl GJ. Active cancer therapy combining 13-cis-retinoic acid with interferon-α. Natl Cancer Inst 1992; 84: 218–9.

    PubMed  Google Scholar 

  12. Durie B. Cellular and molecular genetic features of myeloma and related disorders. Hematol Oncol Clin North Am 1992; 6: 463–77.

    PubMed  Google Scholar 

  13. Dvorak HF, Gresser I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J Natl Cancer Inst 1989; 81: 497–502.

    PubMed  Google Scholar 

  14. Einhorn S, Showe L, Östlund L,et al. Influence of interferon-α on the expression of cellular oncogenes in primary chronic lymphocytic leukemia cells. Oncogene Res (1988) 3: 39–49.

    PubMed  Google Scholar 

  15. Einhorn S, Strander H. Interferon treatment of human malignancies — a short review. Med Oncol Tumor Pharmacother 1993; 10: 25–9.

    PubMed  Google Scholar 

  16. Eskowitz RAB, Mulliken JB, Folkman J. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 1992; 326: 1456–63.

    PubMed  Google Scholar 

  17. Ferbus D, Khosravi S, Dumont J, Billard C.In vivo andin vitro induction of 2′,5′-oligoadenylate synthetase by interferon-alpha in nodular non-Hodgkin's Iymphoma and correlations with the clinical response. J Biol Regul Homeostat Agents 1990; 4: 127–34.

    Google Scholar 

  18. Fishel R, Lescoe M, Ral M, Copeland N, Jenkins N, Garber J, Kane M, Kolodner R. The human mutator gene homolog MSH2 and its association with with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027–38.

    PubMed  Google Scholar 

  19. Folkman J. The role of angiogenesis in tumor growth. Cancer Biol 1992; 3: 65–71.

    Google Scholar 

  20. Grander D, Öberg K, Lundqvist M-L, Tiensuu Jansson E, Eriksson B, Einhorn S. Interferon-induced enhancement of 2′,5′ oligoadenylate synthetase in mid-gut carcinoid tumours. Lancet 1990; 336: 337–40.

    PubMed  Google Scholar 

  21. Grander D, Xu B, Einhorn S. Cytotoxic effect of interferon on primary tumor cells. Studies in various malignancies. Eur J Cancer 1993; 29: 1940–3.

    Google Scholar 

  22. Gresser I, Maury C, Brouty-Boye D. Mechanism of the antitumor effect of interferon in mice. Nature 1972; 239: 167–8.

    PubMed  Google Scholar 

  23. Gresser I. Antitumor effects of interferon. Acta Oncologica 1989; 28, Fasc 3: 347–53.

    PubMed  Google Scholar 

  24. Gresser I, Kaido T, Maury C, Woodrow D, Moss J, Belardelli F. Interaction of IFNα/β with host cells essential to the early inhibition of Friend erythroleukemia visceral metastases in mice. Int J Cancer 1994; 57: 604–11.

    PubMed  Google Scholar 

  25. Gutterman JK. Cytokine therapeutics: Lessons from interferonα. Proc Natl Acad Sci USA 1994; 91: 1198–205.

    PubMed  Google Scholar 

  26. The Italian Cooperative Study Group on Chronic Myeloid Leukemia Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. New Engl J Med 1994; 330: 820–5.

    Google Scholar 

  27. Jakobsson AE. Induction and inhibition of experimental angiogenesis. A quantitative, immunohistochemical and ultrastructural study. Thesis. University of Gothenburg: Vasastadens Bokbinderi AB, Gothenburg, Sweden, 1994.

    Google Scholar 

  28. Jewell A, Worman C, Ludyard P, Yong K, Giles F, Goldstone A. Interferon-alpha up-regulates bc1-2 expression and protects BCLL cells from apoptosisin vitro andin vivo. Brit J Haematol 1994; 88: 268–74.

    Google Scholar 

  29. Jonak G, Knight E. Selective reduction of c-myc mRNA in Daudi cells by human,β-interferon. Proc Natl Acad Sci USA 1984; 81: 1747–50.

    PubMed  Google Scholar 

  30. Kimchi A. Cytokine triggered molecular pathways that control cell cycle arrest. J Cell Biochem 1992; 50: 1–9.

    PubMed  Google Scholar 

  31. Kumar R, Atlas I. Interferon a induces the expression of retinoblastoma gene product in human Burkitt Iymphoma Daudi cells: Role in growth regulation. Proc Natl Acad Sci USA 1992; 89: 6599–603.

    PubMed  Google Scholar 

  32. Le J, Yip YK, Vilcek J. Cytolytic activity of interferon-gamma and its synergism with 5-fluorouracil. Int J Cancer 1984; 34: 495–500.

    PubMed  Google Scholar 

  33. Lowe S, Ruley H, Jacks T, Housman D. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–67.

    PubMed  Google Scholar 

  34. Manabe A, Yi T, Kumagi M, Campana D. Use of stroma supported cultures of leukemic cells to assess antileukemic drugs. I. Cytotoxicity of interferon alpha in acute lymphoblastic leukemia. Leukemia 1993; 7: 1990–5.

    PubMed  Google Scholar 

  35. Maragoudakis ME, Gullino PM, Lelkes PI. Aniogeneis — Molecular biology, clinical aspects. New York, Plenum Press, 1994.

    Google Scholar 

  36. Marshall CJ. Tumor suppressor genes. Cell 1991; 64: 313–26.

    PubMed  Google Scholar 

  37. Marth C, Cronauer M, Doppler W, Ofner D, Ullrich A, Daxenbichler G. Effects of interferons on the on the expression of the proto-oncogene HER-2 in human ovarian carcinoma cells. Int J Cancer 1992; 50: 64–8.

    PubMed  Google Scholar 

  38. McDonald S, Chany AY, Rubin P,et al. Combined betaseron R/Recombinant human interferon beta) and radiation for inoperable non-small cell lung cancer. Int J Radiation Oncology Biol Phys 1993; 27: 613–9.

    Google Scholar 

  39. Milner A, Grand R, Waters C, Gregory C. Apoptosis in Burkitt Iymphoma cells is driven by c-myc. Oncogene 1993; 8: 3385–91.

    PubMed  Google Scholar 

  40. Ohno R. Interferons in the treatment of multiple myeloma. Int J Cancer 1987; Suppl 1: 14–20.

    Google Scholar 

  41. O'Reilly MS, Holmgren L, Shiny Y,et al. Angiostatis: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–28.

    PubMed  Google Scholar 

  42. Resnitsky D, Tiefenbrun N, Berissi H, Imchi A. Interferons and interleukin 6 suppress phosphorylation of the retinoblastoma protein in growthsensitive hematopoietic cells. Proc Natl Acad Sci USA 1992; 89: 402–6.

    PubMed  Google Scholar 

  43. Rosenblum MG, Maxwell BL, Talpaz M.In vivo sensitivity and resistance of CML cells to a-1FN; correlation with receptor binding and induction of 2′,5′-oligoadenylate synthetase. Cancer Res 1986; 46: 4848–52.

    PubMed  Google Scholar 

  44. Sangfelt O, Einhorn S, Björklund A-C, Wiman K, Grander D. Wild type p53 induced apoptosis in a human Burkitt's Iymphoma cell line is inhibited by interferon gamma. 1995 (submitted for publication).

  45. Sangfelt O, Österborg A, Grander D, Anderbring E, Öst Å, Mellstedt H, Einhorn S. Response to interferon therapy in patients with multiple myeloma correlates with expression of the Bc1-2 oncoprotein. 1995A (submitted for publication).

  46. Seymour L, Bezwoda WR. Interferon plus tamoxifen treatment for advanced breast cancer:in vivo biological effects of two growth modulators. Br J Cancer 1993; 68: 352–6.

    PubMed  Google Scholar 

  47. Sidky YA, Borden EC. Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer 1987; 47: 5155–61.

    PubMed  Google Scholar 

  48. Soslau G, Boquchi A, Gillespie D, Hubbell H. Phosphoproteins altered by antiproliferative doses of human interferon-b in human bladder carcinoma cell line. Biochem Biophys Res Commun 1984; 119: 941–8.

    PubMed  Google Scholar 

  49. Stout AJ, Gresser I, Thompson WD. Inhibition of wound healing in mice by local interferonα/β injection. Int J Exp Path 1993; 74: 79–85.

    Google Scholar 

  50. Strander H. Interferon treatment of human neoplasia. Adv Cancer Res 1986; 46: 1–265.

    PubMed  Google Scholar 

  51. Tanaka N, Ishihara M, Kitagawa M, Harada H, Kimura T, Matsuyama T, Lamphier MS, Aizawa S, Mak TW, Taniguchi T. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 1994; 77: 829–39.

    PubMed  Google Scholar 

  52. Vaux D. Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci USA 1993; 90: 786–9.

    PubMed  Google Scholar 

  53. Yasui H, Proietti E, Vignaux F, Eid P, Gresser I. Inhibition of mouseα/β-interferon of the multiplication ofα/β-interferon-resistant Friend erythroleukemia cells cocultured with mouse hepatocytes. Cancer Res 1990; 50: 3533–9.

    PubMed  Google Scholar 

  54. White CW, Sondheimer HM, Crouch EC, Wilson H, Fan LL. Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2a. N Engl J Med 1989; 320: 1197–200.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strander, H., Einhorn, S. Interferons and the tumor cell. Biotherapy 8, 213–218 (1996). https://doi.org/10.1007/BF01877207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01877207

Key words

Navigation