Skip to main content
Log in

The relationship of leaf wetness duration and disease progress of glume blotch, caused byStagonospora nodorum, in winter wheat to standard weather data

  • Research Articles
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Almost 50% of the variation in leaf wetness duration can be explained by maximum and minimum temperatures, rainfall and hours with relative humidity above 90% on a daily basis. All of these parameters can be estimated from a standard weather station. If variables related to wind are added the level of explanation increases to 69–76%. Leaf wetness duration explained up to 42% of the rate of disease increase (RDI) forS. nodorum. Leaf wetness duration was accumulated over a 5-day ‘window’ period and correlated with rate of disease increase after a 7-day ‘lag’ period. Standard weather variables could explain 20–34% of the disease increase. The relevance of these statistical models to disease prediction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aust H-J and Hau B (1983) Die Latenszeit vonSeptoria nodorum in Abhängigkeit von der ontogenetisch bedingten Anfälligkeit des Sommerweizens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 90: 55–62

    Google Scholar 

  • Bahat A, Gelernter I, Brown MB and Eyal Z (1980) Factors affecting the vertical progression of Septoria leaf blotch in short-statured wheats. Phytopathology 70: 179–184

    Google Scholar 

  • Bartlett MS (1947) The use of transformations. Biometrics 3: 39–52

    Google Scholar 

  • Butt DJ and Royle DJ (1974) Multiple regression analysis in the epidemiology of plant diseases. In: Kranz J (ed) Epidemics and Plant Diseases. Mathematical Analysis and Modeling (Ecological Studies 13), Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  • Campbell CL and Madden LV (1990) Introduction to Plant Disease Epidemiology. John Wiley & Sons, New York

    Google Scholar 

  • Chuang TY and Jeger MJ (1987) Predicting the rate of development of black sigatoka (Mycosphaerella fijiensis var.diiformis) disease in southern Taiwan. Phytopathology 77: 1542–1547

    Google Scholar 

  • Coakley SM, Line RF and McDaniel LR (1988) Predicting stripe rust severity on winter wheat using an improved method for analyzing meteorological and rust data. Phytopathology 78: 543–550

    Google Scholar 

  • Coakley SM, McDaniel LR and Shaner G (1985) Model for predicting severity of Septoria tritici blotch on winter wheat. Phytopathology 75: 1245–1251

    Google Scholar 

  • Crowe MJ, Coakley SM and Emge RG (1978) Forecasting dew duration at Pendleton, Oregon, using simple weather observations. Journal of Applied Meteorology 17: 1482–1487

    Google Scholar 

  • Djurle A and Yuen JE (1991) A simulation model forSeptoria nodorum in winter wheat. Agricultural Systems 37: 193–218 + Erratum in Ibid. 38: 339

    Google Scholar 

  • Eyal Z, Brown JF, Krupinsky JM and Scharen AL (1977) The effect of postinoculation periods of leaf wetness on the response of wheat cultivars to infection bySeptoria nodorum. Phytopathology 67: 874–878

    Google Scholar 

  • Eyal Z, Scharen AL, Prescott JM and van Ginkel M (1987) The septoria diseases of wheat: Concepts and methods of disease management. Mexico, D. F.: CIMMYT

    Google Scholar 

  • Friesland H and Schrödter H (1988) The analysis of weather factors in epidemiology. In: Kranz J and Rotem J (eds) Experimental Techniques in Plant Disease Epidemiology, Springer-Verlag, Heidelberg

    Google Scholar 

  • Gillespie TJ and Sutton JC (1979) A predictive scheme for timing fungicide applications to control alternaria leaf blight in carrots. Canadian Journal of Plant Pathology 1: 95–99

    Google Scholar 

  • Häckel H (1980) Neues über die elektrische Methode zur Messung der Benetzungsdauer unmittelbar an der Pflanze. Agricultural Meteorology 22: 113–119

    Google Scholar 

  • Häckel H (1984) Zur Messung der Benetzungsdauer von Pflanzen: Verfahren und Ergebnisse. Meteorol. Rdsch. 37: 97–104

    Google Scholar 

  • Holmes SJI and Colhoun J (1974) Infection of wheat bySeptoria nodorum andS. tritici in relation to plant age and air temperature and relative humidity. Trans. British Mycol. Soc. 63: 329–338

    Google Scholar 

  • Huband NDS and Butler DR (1984) A comparison of wetness sensors for use with computer or microprocessor systems designed for disease forecasting. British Crop Protection Conference — Pests and Diseases 1984, 633–638

  • Huber L (1988) Modèle de simulation de la durée d'humectation des feuilles au champ après une pluie. Cas d'un couvert homogène. Agronomie 8: 675–684

    Google Scholar 

  • Huber L (1992) Déterminisme et mesure de la durée d'humectation en vue de la protection des plantes. Agronomie 12: 281–295

    Google Scholar 

  • Huber L and Gillespie TJ (1992) Modeling leaf wetness in relation to plant disease epidemiology. Annual review of Phytopathology 30: 553–577

    Google Scholar 

  • Jeger MJ, Griffiths E and Jones DG (1981) Influence of environmental conditions on spore dispersal and infection bySeptoria nodorum. Annals of Applied Biology 99: 29–34

    Google Scholar 

  • Jones AL (1986) The role of wet periods in predicting foliar diseases. In: Leonard KJ and Fry WE (eds) Plant Disease Epidemiology. Vol 1. Population Dynamics and Management, Macmillan Publishing Company, New York

    Google Scholar 

  • Jönsson JÖ (1985) Evaluation of leaf resistance toSeptoria nodorum in winter wheat at seedling and adult plant stage. Agri Hortique Genetica XLIII: 52–68

    Google Scholar 

  • King JE, Cook RJ and Melville SC (1983) A review ofSeptoria diseases of wheat and barley. Annals of Applied Biology 103: 345–373

    Google Scholar 

  • Lomas J and Shashoura Y (1970) The performance of three types of leaf wetness recorders. Agricultural Meteorology 7: 159–166

    Google Scholar 

  • Pedro MJ and Gillespie TJ (1982a) Estimating dew duration. I. Utilizing micrometeorological data. Agricultural Meteorology 25: 283–296

    Google Scholar 

  • Pedro MJ and Gillespie TJ (1982b) Estimating dew duration. II. Utilizing standard weather station data. Agricultural Meteorology 25: 297–310

    Google Scholar 

  • Post JJ (1959) De hydrograaf als bladnatschrijver. Versl. Koninklijk Nederlands Meteorologisch Instituut V-51 (R111: 234–1959)

    Google Scholar 

  • Rapilly F and Skajennikoff M (1974) Études sur l'inoculum deSeptoria nodorum Berk. agent de septoriose du blé. II. Les pycniospores. Annales des Phytopathologie 6: 71–82

    Google Scholar 

  • Rapilly F, Auriau P, Laborie Y, Depatureaux C and Skajennikoff M (1981) Résistance partielle du blé,Triticum aestivum L., àSeptoria nodorum Berk. — Étude du temps d'incubation. Agronomie 1: 771–782

    Google Scholar 

  • Royle DJ, and Butler DR (1986) Epidemiological significance of liquid water in crop canopies and its role in disease forecasting. In: Ayres and Boddy (ed) Water, Fungi and Plants. Cambridge University Press

  • Royle DJ, Shaw MW and Cook RJ (1986) Patterns of development ofSeptoria nodorum andS. tritici in some winter wheat crops in western Europe, 1981–83. Plant Pathology 35: 466–476

    Google Scholar 

  • Scharen AL (1964) Environmental influences on development of glume blotch in wheat. Phytopathology 54: 300–303

    Google Scholar 

  • Scott PR, Benedikz PW, Jones HG and Ford MA (1985) Some effects of canopy structure and microclimate on infection of tall and short wheats bySeptoria nodorum. Plant Pathology 34: 578–593

    Google Scholar 

  • Shaw MW and Royle DJ (1993) Factors determining the severity of epidemics ofMycosphaerella graminicola (Septoria tritici) on winter wheat in the UK. Plant Pathology 42: 882–899

    Google Scholar 

  • Shearer BL and Zadoks JC (1972) The latent period ofS. nodorum in wheat. 1. The effect of temperature and moisture treatments under controlled conditions. Netherlands Journal of Plant Pathology 78: 231–241

    Google Scholar 

  • Shearer BL and Zadoks JC (1974) The latent period ofS. nodorum in wheat. 2. The effect of temperature and moisture treatments under field conditions. Netherlands Journal of Plant Pathology 80: 48–60

    Google Scholar 

  • Smith LP (1956) Potato blight forecasting by 90% humidity criteria. Plant Pathology 5: 83–87

    Google Scholar 

  • Smith LP (1962) The duration of surface wetness (A new approacch to horticultural climatology). Advances in Horticulture Science and their Application 3: 478–483

    Google Scholar 

  • Sutton JC, Gillespie TJ and Hildebrand PD (1984) Monitoring weather factors in relation to plant disease. Plant Disease 68: 78–84

    Google Scholar 

  • Thompson N (1981) The duration of leaf wetness. Meteorological Magazine 110: 1–12

    Google Scholar 

  • Vanderplant JE (1963) Plant Diseases. Epidemics and Control. Academic Press, London

    Google Scholar 

  • Wallin JR (1963) Dew, its significance and measurement in phytopathology. Phytopathology 53: 1201–1216

    Google Scholar 

  • Zadoks JC (1961) Yellow rust on wheat, studies in epidemiology and physiologic specialization. Tijdschr. Plantenziekten 67: 69–256

    Google Scholar 

  • Zadoks JC, Chang TT and Konzak CF (1974) A decimal code for the growth stage of cereals. Weed Research 14: 415–421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djurle, A., Ekbom, B. & Yuen, J.E. The relationship of leaf wetness duration and disease progress of glume blotch, caused byStagonospora nodorum, in winter wheat to standard weather data. Eur J Plant Pathol 102, 9–20 (1996). https://doi.org/10.1007/BF01877111

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01877111

Key words

Navigation