Skip to main content
Log in

Chemical stimulation of Na transport through amiloride-blockable channels of frog skin epithelium

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The stimulation of apical Na permeability caused by a number of reagents effective from the outer side of the membrane was investigated by fluctuation analysis. In the epidermis ofR. ridibunda, parachloromercuriphenyl sulfonate (PCMPS) and benzimidazolyl guanidine (BIG) increase the number (N 0) of conducting Na channels by releasing channels from Na self-inhibition. As a consequence, the apparent macroscopic affinity for amiloride is increased. 5-dimethyl amiloride and trinitrobenzene sulfonate (TNBS) also cause reversible stimulation by increasingN 0; here release from self-inhibition is less clear. With each of the four stimulators investigated, the Na channel current remained unaffected or was only marginally increased. In addition to its stimulatory effect, TNBS caused irreversible blockage of Na channels. Apart from their stimulatory effects, BIG and 5-dimethyl amiloride, both of which have a side-chain terminated with an amidino group, are high rate-blocking competitors of amiloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelone, L. 1965. Hemolysis of rat erythrocytes byp-hydroxymercuribenzoate and N-ethylmaleimide.Arch. Biochem. Biophys. 112:288–293

    Article  Google Scholar 

  • Arrotti, J.J., Garvin, J.E. 1972. Reaction of human serum albumin and human eruthrocytes with titrated 2,4,6-trinitrobenzenesulfonic acid and tritiated picryl chloride.Biochim. Biophys. Acta 255:79–90

    PubMed  Google Scholar 

  • Balaban, R.S., Mandel, L.J., Benos, D.J. 1979. On the crossreactivity of amiloride and 2,4,6-triaminopyrimidine (TAP) for the cellular entry and tight junctional cation permeation pathways in epithelia.J. Membrane Biol..49:363–390

    Article  Google Scholar 

  • Barnes, T.C. 1939. The electrical potential of frog skin stained with fluorescent dyes.J. Cell. Comp. Physiol. 14:83–94

    Article  Google Scholar 

  • Benos, D.J., Mandel, L.J., Simon, S.A. 1980. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: Evidence for separate sites.J. Membrane Biol. 56:149–158

    Google Scholar 

  • Benos, D.J., Simon, S.A., Mandel, L.J., Cala, P.M. 1976. Effect of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid membranes.J. Gen. Physiol. 68:43–63

    PubMed  Google Scholar 

  • Bevevino, L.H., Lacaz-Vieira, F. 1982. Control of sodium permeability of the outer barrier in toad skin.J. Membrane Biol. 66:97–107

    Article  Google Scholar 

  • Chase, H.S., Jr., Al-Awqati, Q. 1981. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium.J. Gen. Physiol. 77:693–712

    PubMed  Google Scholar 

  • Cuthbert, A.W. 1976. Importance of guanidinium groups for blocking sodium channels in epithelia.Mol. Pharmacol. 12:945–957

    PubMed  Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1974. Binding of amiloride to sodium channels in frog skin.Mol. Pharmacol. 10:880–891

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1976. Induction of transporting sites in a sodium transporting epithelium.J. Physiol. (London) 260:223–235

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1978. Interdependence of the two borders in a sodium transporting epithelium. Possible regulation by the transport pool.J. Membrane Biol. Special Issue:221–245

  • Cuthbert, A.W., Wong, P.Y.D. 1972. The role of calcium ions in the interaction of amiloride with membrane receptors.Mol. Pharmacol. 8:222–229

    PubMed  Google Scholar 

  • DeSousa, R.C., Grosso, A. 1973. Effects of diphenylhydantoin on transport processes in frog skin (Rana ridibunda).Experientia 29:1097–1098

    PubMed  Google Scholar 

  • DeSousa, R.C., Grosso, A. 1978. Vasopressin-like effects of a hallucinogenic drug-harmaline — on sodium and water transport.J. Membrane Biol. 40:77–94

    Google Scholar 

  • Dick, H.J. 1977. Der Einfluss von Sulfhydrylreagenzien auf den transepithelialen Na-Transport der isolierten Froschhaut. M. D. Thesis, Universität des Saarlandes, Medical Faculty 665 Homburg, F.R.G.

    Google Scholar 

  • Dick, H.J., Lindemann, B. 1975. Saturation of Na-current into frog skin epithelium abolished by PCMPS.Pfluegers Arch. 355:R72

    Google Scholar 

  • Fallenstein, G. 1980. Die Wirkung von Glutardialdehyd auf das apikale Na-Transportsystem im Epithel der Froschhaut. M.D. Thesis, Universität des Saarlandes, Medical Faculty 6650 Homburg, F.R.G.

    Google Scholar 

  • Fallenstein, G., Lindemann, B. 1979. Passive Na-uptake of frog skin: Alterations by fixation with glutardialdehyde.Pfluegers Arch. 379:R17

    Google Scholar 

  • Freedman, R.B., Radda, G.K. 1968. The reaction of 2,4,6-trinitrobenzenesulfonic acid with amino acids, peptides and proteins.Biochem. J. 108:383–391

    PubMed  Google Scholar 

  • Friedman, M. 1973. The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides and Proteins. Pergamon Press, New York

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Fülgraff, G., Gulden, W.D., Rudroff, W.D. 1973. Effect of furosemide on sodium transport in frog skin.Arch. Pharmacol. 280:23–38

    Google Scholar 

  • Garcia-Romeau, F. 1974. Stimulation of sodium transport in frog skin by 2-imidazolines (guanidinebenzimidazole and phentolamine).Life Sci. 15:539–542

    PubMed  Google Scholar 

  • Grinstein, S., Candia, O., Erlij, D. 1978. Nonhormonal mechanisms for the regulation of transepithelial sodium transport: The roles of surface potential and cell calcium.J. Membrane Biol. Special Issue:261–280

  • Harms, V., Fanestil, D.D. 1977. Functions of apical membrane of toad urinary bladder: Effects of membrane impermeant reagents.Am. J. Physiol. 233:F607-F614

    PubMed  Google Scholar 

  • Janaček, K. 1962. The effect of low concentrations of thiolgroup blocking agents on the outer membrane of frog skin.Biochim. Biophys. Acta 56:42–48

    PubMed  Google Scholar 

  • Johnston, K.H., Hoshiko, T. 1971. Novobiocin stimulation of frog skin current and some metabolic consequences.Am. J. Physiol. 220:792–798

    PubMed  Google Scholar 

  • Kirschner, L.B. 1955. The effect of atropine and the curares on the active transport of sodium by the skin ofRana esculenta.J. Cell. Comp. Physiol. 45:89–102

    Google Scholar 

  • Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. I: Effect of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210

    PubMed  Google Scholar 

  • Kramer, H.J. 1976. Effects of bumetanide on sodium transport of the isolated frog skin and on renal Na−K-ATPase.Pharmacology 14:481–489

    PubMed  Google Scholar 

  • Li, J.H.-Y., DeSousa, R.C. 1979. Inhibitory and stimulatory effects of amiloride analogues on sodium transport in frog skin.J. Membrane Biol. 46:155–169

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1980. The mechanism of chemical stimulation of amiloride sensitive Na channels.Pfluegers Arch. 384:R7

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1981. Blockage of epithelial Na channels by organic cations: The relationship of microscopic and macroscopic inhibition constants.Pfluegers Arch. 391:R25

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of Na channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Lindemann, B. 1977. A modifier-site model for passive Na transport into frog skin epithelium.In: Intestinal, Permeation. M. Kramer and F. Lauterbach, editors. pp. 217–228. Excerpta Medica, Amsterdam

    Google Scholar 

  • Lindemann, B. 1978. Steady state kinetics of a floating receptor model for the inhibition of sodium uptake by sodium in frog skin.In: Renal Function. G.H. Giebisch and E.F. Purcell, editors. pp. 110–131. Waverly Press, Baltimore

    Google Scholar 

  • Lindemann, B., DeFelice, L.J. 1981. On the use of general network functions in the evaluation of noise spectra obtained from epithelia.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 1–13. Raven Press, New York

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1978. The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, pp. 155–178. Raven Press, New York

    Google Scholar 

  • Lindemann, B., Voûte, C. 1976. Structure and function of the epidermis.In: Frog Neurobiology. R. Llinás and W. Precht, editors. pp. 169–210. Springer Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Means, G.E., Feeney, R.E. 1971. Chemical Modification of Proteins. Holden-Day, San Francisco

    Google Scholar 

  • Skou, J., Hilberg, C. 1965. The effect of sulfhydryl blocking reagents and of urea on the (Na+K)-activated enzyme system.Biochim. Biophys. Acta 110:359–369

    PubMed  Google Scholar 

  • Skou, J.C., Zerahn, K. 1959. Investigations on the effect of some local anaesthetics and other amines on the active transport of sodium through the isolated short-circuited frog skin.Biochim. Biophys. Acta 35:324–333

    PubMed  Google Scholar 

  • Spooner, P.M., Edelman, I.S. 1976. Stimulation of Na+ transport across the toad urinary bladder byp-chloromercuribenzene sulfonate.Biochim. Biophys. Acta 455:272–276

    PubMed  Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505-F512

    Google Scholar 

  • Thurman, C.L., Higgins, J.T. 1982. Amiloride stimulation of sodium transport in the presence of calcium and a divalent cation chelator.Biochim. Biophys. Acta 689:561–566

    PubMed  Google Scholar 

  • Van Driessche, W., Lindemann, B. 1978. Low-noise amplification of voltage and current fluctuations arising in epithelia.Rev. Sci. Instrum. 49:52–55

    Google Scholar 

  • Zeiske, W. 1975. The influence of 2,4,6-triaminopyrimidine on Na transport in frog skin.Pfluegers Arch. 359:R127

    Article  Google Scholar 

  • Zeiske, W., Lindemann, B. 1974. Chemical stimulation of Na current through the outer surface of frog skin epithelium.Biochim. Biophys. Acta 352:323–326

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.H.Y., Lindemann, B. Chemical stimulation of Na transport through amiloride-blockable channels of frog skin epithelium. J. Membrain Biol. 75, 179–192 (1983). https://doi.org/10.1007/BF01871949

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871949

Key Words

Navigation