Skip to main content
Log in

Calcium mobilizing hormones activate the plasma membrane Ca2+ pump of pancreatic acinar cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asano, T., Hidaka, H. 1985. Intracellular Ca2+ antagonist, HA 1004: Pharmacological properties different from those of nicardipine.J. Pharmacol. Exp. Ther. 233:454–458

    PubMed  Google Scholar 

  2. Aub, D.L., McKinney, J.S., Putney, J.W. 1982. Nature of the receptor-regulated calcium pool in the rat parotid gland.J. Physiol. (London) 331:557–565

    Google Scholar 

  3. Brown, G.R., Richardson, A.E., Dormer, R.L. 1987. The role of a (Ca2++Mg2+)-ATPase of the rough endoplasmic reticulum in regulating intracellular Ca2+ during cholinergic stimulation of rat pancreatic acini.Biochim. Biophys. Acta 902:87–92

    PubMed  Google Scholar 

  4. Bruzzone, R., Halban, P.A., Gjinovci, A., Trimble, E.R. 1985. A new, rapid, method for preparation of dispersed pancreatic acini.Biochem. J. 226:621–624

    PubMed  Google Scholar 

  5. Bruzzone, R., Pozzan, T., Wollheim, C.B. 1986. Caerulein and carbamylcholine stimulate pancreatic amylase release at resting cytosolic free Ca2+.Biochem. J. 235:139–143

    PubMed  Google Scholar 

  6. Burnham, D.B., Munowitz, P., Hootman, S.R., Williams, J.A. 1985. Regulation of protein phosphorylation in pancreatic acini. Distinct effects of Ca2+ ionophore A23187 and 12-O-tetradecanoylphorbol 13-acetate.Biochem. J. 235:125–131

    Google Scholar 

  7. Carafoli, E. 1987. Intracellular calcium homeostasis.Annu. Rev. Biochem. 56:395–433

    PubMed  Google Scholar 

  8. Caroni, P., Carafoli, E. 1981. Regulation of Ca2+ pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation process.J. Biol. Chem. 256:9371–9373

    Google Scholar 

  9. Dixon, J., Hokin, L. E. 1984. Sectretagogue-stimulated phosphatidylinositol breakdown in the exocrine pancreas liberates arachidonic acid, stearic acid, and glycerol by sequential actions of phospholipase C and diglyceride lipase.J. Biol. Chem. 259:14418–14425

    PubMed  Google Scholar 

  10. Dormer, R.L., Poulsen, J.H., Licko, W., Williams, J.A. 1981. Calcium fluxes in isolated pancreatic acini: Effects of secretagoguesAm. J. Physiol. 240:G38-G43

    PubMed  Google Scholar 

  11. Drummond, A.H. 1985. Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells.Nature (London) 315:752–755

    Google Scholar 

  12. Fain, J.N., Berridge, M.J. 1979. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland.Biochem. J. 178:45–58

    PubMed  Google Scholar 

  13. Gardner, J.D., Conlon, D.T.P., Klaereman, H.L., Adams, T.D., Ondetti, M.A. 1975. Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells.J. Clin. Invest. 56:366–375

    PubMed  Google Scholar 

  14. Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260:3440–3450

    Google Scholar 

  15. Hidaka, H., Inagaki, M., Kawamoto, S., Sasaki, Y. 1984. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C.Biochemistry 23:5036–5041

    PubMed  Google Scholar 

  16. Hootman, S.R., Williams, J.A. 1987. Stimulus-secretion coupling in the pancreatic acinus.In: Physiology of the Gastrointestinal Tract. L.R. Johnson, editor. pp. 1129–1146. Raven, New York

    Google Scholar 

  17. Kai, H., Kanaide, H., Matsumoto, T., Nakamura, M. 1987. 8-Bromoguanosine 3′:5′-cyclic monophosphate decreases intracellular free calcium concentrations in cultured vascular smooth muscle cells from rat aorta.FEBS Lett. 221:284–288

    PubMed  Google Scholar 

  18. Kondo, S., Schulz, I. 1976. Calcium ion uptake in isolated pancreas cells induced by secretagogues.Biochim. Biophys. Acta 419:76–92

    PubMed  Google Scholar 

  19. Kondo, S., Schulz, I. 1976. Ca++ fluxes in isolated cells of rat pancreas: Effect of secretagogues and different Ca++ concentrations.J. Membrane Biol. 29:185–203

    Google Scholar 

  20. Korchak, H.M., Rutherford, L.E., Weissmann, G. 1984. Stimulus response coupling in the human neutrophil. I. Kinetic analysis of changes in calcium permeability.J. Biol. Chem. 259:4070–4075

    PubMed  Google Scholar 

  21. Lagast, H., Pozzan, T., Waldragel, F.A., Lew, D.P. 1984. Phorbol myristate acetate stimulates ATP-dependent calcium transport by the plasma membrane of neutrophils.J. Clin. Invest. 73:873–883

    PubMed  Google Scholar 

  22. Matthew, E.K., Peterson, O.H., Williams, J.A. 1973. Pancreatic acinar cells: Acetylcholine-induced membrane depolarization, calcium efflux and amylase release.J. Physiol. (London) 234:689–701

    Google Scholar 

  23. Mauger, J.P., Poggioli, J., Guesdon, F., Claret, M. 1984. Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells.Biochem. J. 221:121–127

    PubMed  Google Scholar 

  24. Merritt, J.E., Rink, T.J. 1987 Regulation of cytosolic free calcium in Fura-2 loaded rat parotid acinar cells.J. Biol. Chem. 262:17362–17369

    PubMed  Google Scholar 

  25. Merritt, J.E., Rubin, R.P. 1985. Pancreatic amylase secretion and cytoplasmic free calcium: Effect of ionomycin, phorbol dibutyrate and diacylglycerols alone and in combination.Biochem. J. 230:151–159

    PubMed  Google Scholar 

  26. Muallem, S., Beeker, T., Pandol, S.J. 1988. Role of Na+/Ca2+ exchange and the plasma membrane Ca2+ pump in hormone-mediated Ca2+ efflux from pancreatic acini.J. Membrane Biol. 102:153–162

    Google Scholar 

  27. Muallem, S., Fimmel, C.J., Pandol, S.J., Sachs, G. 1986. Regulation of free cytosolic Ca2+ and secretion in parietal and peptic cells.J. Biol. Chem. 261:2660–2667

    PubMed  Google Scholar 

  28. Muallem, S., Schoeffield, M.S., Fimmel, C.J., Pandol, S.J. 1988. The agonist-sensitive calcium pool in the pancreatic acinar cell: I. Permeability properties.Am. J. Physiol. 255:G221-G228

    PubMed  Google Scholar 

  29. Muallem, S., Schoeffield, M.S., Fimmel, C.J., Pandol, S.J. 1988. The agonist-sensitive calcium pool in the pancreatic acinar cell: II. Characterization of reloading.Am. J. Physiol. 255:G229-G235

    PubMed  Google Scholar 

  30. Neyses, L., Reinlib, L., Carfoli, E. 1985. Phosphorylation of the Ca2+ pumping ATPase of heart sarcolemma and erythrocyte plasma membrane by the cAMP-dependent protein kinase.J. Biol. Chem. 260:10283–10287

    PubMed  Google Scholar 

  31. Nishizuka, Y. 1986. Studies and perspectives of protein kinase C.Science 233:305–312

    PubMed  Google Scholar 

  32. Noguchi, M., Adachi, H., Gardner, J.D., Jensen, R.T. 1985. Calcium-activated, phospholipid-dependent protein kinase in pancreatic acinar cells.Am. J. Physiol. 248:G692-G701

    PubMed  Google Scholar 

  33. Ochs, D.L., Korenbrot, J.I., Williams, J.A. 1985. Relationship between agonist-induced changes in the concentration of free intracellular calcium and the secretion of amylase by pancreatic ancini.Am. J. Physiol. 249:G389-G398

    PubMed  Google Scholar 

  34. Pandol, S.J., Schoeffield, M.S. 1986. 1,2-Diacylglycerol, protein kinase C, and pancreatic enzyme secretion.J. Biol. Chem. 261:4438–4444

    PubMed  Google Scholar 

  35. Pandol, S.J., Schoeffield, M.S., Fimmel, J.C., Muallem, S. 1987. The agonist-sensitive calcium pool in the pancreatic acinar cell: Activation of plasma membrane Ca2+ influx mechanism.J. Biol. Chem. 262:16963–16968

    PubMed  Google Scholar 

  36. Pandol, S.J., Schoeffield, M.S., Sachs, G., Muallem, S. 1985. The role of free cytosolic calcium in secretagogues stimulated amylase release from dispersed acini from guinea pig pancreas.J. Biol. Chem. 260:10081–10086

    PubMed  Google Scholar 

  37. Pandol, S.J., Thomas, M.W., Schoeffield, M.S., Sach, G., Muallem, S. 1985. Role of Ca2+ in cholecystokinin-stimulated phosphoinositide breakdown in exocrine pancreas.Am. J. Physiol. 248:G551-G560

    PubMed  Google Scholar 

  38. Poggioli, J., Putney, J.W. 1982. Net calcium fluxes in rat parotid acinar cells: Evidence for a hormone-sensitive calcium pool in or near the plasma membrane.Pfluegers Arch. 392:239–243

    Google Scholar 

  39. Pollock, W.K., Sage, S.O., Rink, T.J. 1987. Stimulation of Ca2+ efflux from Fura-2-loaded platelets activated by thrombin or phorbol myristate acetate.FEBS Lett. 210:132–136

    PubMed  Google Scholar 

  40. Pozzan, T., Lew, D., Wollheim, C.B., Tsien, R.Y. 1983. Is cytosolic ionized calcium regulating neutrophil activation?Science 221:1413–1415

    PubMed  Google Scholar 

  41. Putney, J.W. 1986. A model for receptor-regulated calcium entry.Cell Calcium 7:1–12

    PubMed  Google Scholar 

  42. Putney, J.W. 1987. Formation and actions of calcium-mobilizing messenger, inositol 1,4,5-trisphosphate.Am. J. Physiol. 252:G149-G157

    PubMed  Google Scholar 

  43. Reinhart, P.H., Taylor, W.M., Bygrave, F.L. 1984. The action of alpha-adrenergic agonists on plasma membrane calcium fluxes in perfused rat liver.Biochem. J. 220:43–50

    PubMed  Google Scholar 

  44. Reinhart, P.H., Taylor, W.M., Bygrave, F.L. 1984. The role of calcium ions in action of alpha-adrenergic agonists, in rat liver.Biochem. J. 223:1–13

    PubMed  Google Scholar 

  45. Richard, J.E., Sheterline, P. 1985. Evidence that phorbol ester interferes with stimulated Ca2+ redistribution by activating Ca2+ efflux in neutrophil leucocytes.Biochem. J. 231:623–628

    PubMed  Google Scholar 

  46. Richardson, A.E., Dormer, R.L. 1984. Calcium-ion-transporting activity in two microsomal subfractions from rat pancreatic acini: Modulation by carbamylcholine.Biochem. J. 219:679–685

    PubMed  Google Scholar 

  47. Rink, T.J., Sage, S.O. 1987. Stimulated calcium efflux from Fura-2-loaded human platelets.J. Physiol. (London) 393:513–524

    Google Scholar 

  48. Sadler, K., Litosch, I., Fain, J.N. 1984. Phosphoinositide synthesis and Ca2+ gating in blowfly salivary glands exposed to 5-hydroxytryptamine.Biochem. J. 222:327–334

    PubMed  Google Scholar 

  49. Schofield, J.G. 1983. Use of a trapped fluorescent indicator to demonstrate effects of throliberin and dopamin on cytoplasmic Ca2+ concentration in bovine anterior pituitary cells.FEBS Lett. 159:79–82

    PubMed  Google Scholar 

  50. Schulz, I. 1980. Messenger role of calcium in function of pancreatic acinar cells.Am. J. Physiol. 239:G335-G347

    Google Scholar 

  51. Sha'afi, R.I., Moalski, T.F.P., Huang, C.K., Naccache, P.H. 1986. The inhibition of neutrophil responsiveness caused by phorbol esters is blocked by the protein kinase C inhibitor H7.Biochem. Biophys. Res. Commun. 137:50–60

    PubMed  Google Scholar 

  52. Smallwood, J.I., Gugi, B., Rasmussen, H. 1988. Regulation of erythrocyte Ca2+ pump activity by protein kinase C.J. Biol. Chem. 263:2195–2202

    PubMed  Google Scholar 

  53. Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effect of inostiol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas.J Membrane Biol. 81:241–253

    Google Scholar 

  54. Streb, H., Heslop, J.P., Irvine, R.F., Schulz, I., Berridge, M.J. 1985. Relationship between secretagogue-induced Ca2+ release and inositol polyphosphate production in permeabilized pancreatic acinar cells.J. Biol. Chem. 260:7309–7315

    PubMed  Google Scholar 

  55. Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate.Nature (London) 306:67–69

    Google Scholar 

  56. Williamson, J.R., Cooper, R.H., Joseph, S.K., Thomas, A.P. 1985. Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver.Am. J. Physiol. 248:C203-C216

    PubMed  Google Scholar 

  57. Wright, C.D., Hoffman, M.D. 1986. The protein kinase C inhibitors H7 and H9 fail to inhibit human neutrophil activation.Biochem. Biophys. Res. Commun. 135:749–755

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muallem, S., Pandol, S.J. & Beeker, T.G. Calcium mobilizing hormones activate the plasma membrane Ca2+ pump of pancreatic acinar cells. J. Membrain Biol. 106, 57–69 (1988). https://doi.org/10.1007/BF01871767

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871767

Key Words

Navigation