Skip to main content
Log in

Single-channel recordings from the apical membrane of the toad urinary bladder epithelial cell

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The patch-clamp technique for the recording of single-channel currents was used to investigate the activity of ion channels in the intact epithelium of the toad urinary bladder. High resistance seals were obtained from the apical membrane of tightly stretched tissue. Single-channel recordings revealed the activity of a variety of ion channels that could be classified in 4 groups according to their mean ion conductances, ranging from 5 to 59 pS. In particular, we observed highly selective, amiloridesensitive Na channels with a mean conductance of 4.8 pS, channels with a similar conductance that were not Na-selective and channels with mean conductance values of 17–58 pS that were mostly seen after stimulation of the tissue with vasopressin or cAMP. When inside-out patches from the apical membrane were exposed to 110mm fluoride, large conductances (86–490 pS) appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aelvoet, I., Erlij, D., VanDriessche, W. 1988. Activation and blockage of a calcium-sensitive cation-selective pathway in the apical membrane of toad urinary bladder.J. Physiol. (London) 398: 555–574

    Google Scholar 

  • Armstrong, D., Eckert, R. 1987. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization.Proc. Nat. Acad. Sci. USA 84: 2518–2522

    Google Scholar 

  • Avenet, P., Hofmann, F., Lindemann, B. 1988. Transduction in taste receptor cells requires cAMP-dependent protein kinase.Nature (London) 331: 351–354

    Google Scholar 

  • Bidet, S., Berthonaud, V., Gobin, R., Chevalier, J., Bourguet, J., Ripoche, P. 1985. Apical material extracted from amphibian urinary bladder epithelium by enzymes and detergent treatment.Biol. Cell 55: 191–198

    Google Scholar 

  • Chad, J., Kalman, D., Armstrong, D. 1986. The role of cAMP-dependent phosphorylation in the maintenance and the modulation of voltage-activated calcium channels.In: Cell Calcium and the Control of Membrane Transport. L.J. Mandel and D.C. Eaton, editors. pp. 167–186. Rockefeller University, New York

    Google Scholar 

  • Chase, H.S. 1984. Does calcium couple the apical and basolateral membrane permeabilities in epithelia?Am. J. Physiol. 247: F869-F876

    Google Scholar 

  • Christensen, O., Zeuthen, T. 1987. Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential.Pfluegers Arch. 408: 249–259

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1975. Effects of vasopressin and aldosterone on amiloride binding in toad bladder epithelial cells.Proc. R. Soc. London B. 189: 543–575

    Google Scholar 

  • Donaldson, P. 1986. The electrophysiology of toad urinary bladder. Ph.D. Thesis. University of Otago. Dunedin, New Zealand

    Google Scholar 

  • Eaton, D.C., Hamilton, K.L. 1986. Ion transport across epithelial tissue: New insight from single channel measurements.Fed. Proc. 45: 2707

    Google Scholar 

  • Eaton, D.C., Hamilton, K.L. 1988. The amiloride-blockable sodium channel of epithelial tissues.In: Ion channels. T. Narahashi, editor. Vol. 1, pp. 251–282. Plenum, New York

    Google Scholar 

  • Erlij, D., Schoen, H.F., VanDriessche, W. 1986. Oxytocin and cAMP stimulate four different ion channels in isolated amphibian epithelial tissue.J. Physiol. (London) 377: 33P

    Google Scholar 

  • Ewald, D.A., Williams, A., Levitan, I.B. 1985. Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation.Nature (London) 315: 503–506

    Google Scholar 

  • Garty, H. 1986. Mechanisms of aldosterone action in tight epithelia.J. Membrane Biol. 90: 193–205

    Google Scholar 

  • Garty, H., Asher, C. 1986. Ca2+-induced down-regulation of Na+ channels in toad bladder epithelium.J. Biol. Chem. 261: 7400–7406

    Google Scholar 

  • Garty, H., Benos, D.J. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na channel.Physiol. Rev. 68: 304–374

    Google Scholar 

  • Garty, H., Edelman, I.S. 1983. Amiloride-sensitive trypsinization of apical sodium channels.J. Gen. Physiol. 81: 785–803

    Google Scholar 

  • Gitter, H.A., Beyenbach, K.W., Christine, C.W., Gross, P., Minuth, W.W., Froemter, E. 1987. High conductance K+ channel in apical membranes of principal cell cultures from rabbit cortical collecting duct anlagen.Pfluegers Arch. 408: 282–290

    Google Scholar 

  • Gögelein, H., Greger, R. 1986. Na+ selective channels in the apical membrane of the rabbit late proximal tubules (pars recta).Pfluegers Arch. 406: 198–203

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391: 85–100

    Google Scholar 

  • Hamilton, K.L., Eaton, D.C. 1985. Single channel recordings from amiloride-sensitive epithelial sodium channels.Am. J. Physiol. 249: C200-C207

    Google Scholar 

  • Hamilton, K.L., Eaton, D.C. 1986a. Regulation of single sodium channels in renal tissue: A role in sodium homeostasis.Fed. Proc. 45: 2713–2717

    Google Scholar 

  • Hamilton, K.L., Eaton, D.C. 1986b. Single-channel recordings from two types of amiloride-sensitive epithelial Na+ channels.Membr. Biochem. 6: 149–171

    Google Scholar 

  • Horn, R., Patlak, J. 1980. Single channel current from excised patches of muscle membrane.Proc. Nat. Acad. Sci. USA 77: 6930–6934

    Google Scholar 

  • Hunter, M., Giebisch, G. 1987. Multi-barrelled K channels in renal tubules.Nature (London) 327: 522–524

    Google Scholar 

  • Hynie, S., Sharp, G.W.G. 1970. Adenyl cyclase in toad bladder.Biochim. Biophys. Acta 230: 40–51

    Google Scholar 

  • Ilani, A., Lichtstein, D., Bacaner, M.B. 1982. Bretylium opens mucosal amiloride-sensitive sodium channels.Biochim. Biophys. Acta 693: 503–506

    Google Scholar 

  • Ilani, A., Yachin, S., Lichtstein, D. 1984. Comparison between bretylium and diphenylhydantoin interaction with mucosal sodium-channels.Biochim. Biophys. Acta 777: 323–330

    Google Scholar 

  • Kipnowski, J., Park, C.S., Fanestil, D.D. 1983. Modification of carboxyl of Na+ channel inhibits aldosterone action on Na+ transport.Am. J. Physiol. 245: F726-F734

    Google Scholar 

  • Kits, K.S., Mos, G.J., Leeuwerik, F.J., Wattel, C. 1987. Acquisition analysis of fast single channel kinetic data on an Apple Ile microcomputer.J. Neurosci. Methods 20: 57–71

    Google Scholar 

  • Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42: 298–308

    Google Scholar 

  • Koeppen, B.M., Beyenbach, K.W., Helman, S.I. 1984. Single channel currents in renal tubules.Am. J. Physiol. 247: F380-F384

    Google Scholar 

  • Kolb, H.A., Brown, C.D., Murer, H. 1985. Identification of a voltage-dependent anion channel in the apical membranes of a Cl-secretory epithelium (MDCK).Pfluegers Arch. 403: 262–265

    Google Scholar 

  • Kolb, H.-A., Brown, C.D.A., Murer, H. 1986. Characterization of a Ca-dependent maxi K channel in the apical membrane of a cultured renal epithelium (JTC-12.P3).J. Membrane Biol. 92: 207–215

    Google Scholar 

  • Krouse, M.E., Schneider, G.T., Gage, P.W. 1986. A large anionselective channel has seven conductance levels.Nature (London) 319: 58–60

    Google Scholar 

  • Leaf, A., Hays, R.M. 1962. Permeability of the isolated toad bladder to solutes and its modification by vasopressin.J. Gen. Physiol. 45: 921–932

    Google Scholar 

  • Levitan, I.B. 1985. Phosphorylation of ion channels.J. Membrane Biol. 87: 177–190

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1983. Competitive blocking of epithelial sodium channels by organic cations: The relationship between macroscopic and microscopic inhibition constants.J. Membrane Biol. 76: 235–251

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64: 77–89

    Google Scholar 

  • Lichtenstein, N.S., Leaf, A. 1965. Effect of amphotericin B on the permeability of the toad bladder.J. Clin. Invest. 8: 1328–1342

    Google Scholar 

  • Lindemann, B. 1984. Fluctuation analysis of sodium channels in epithelia.Annu. Rev. Physiol. 46: 497–515

    Google Scholar 

  • Lindemann, B., VanDriessche, W. 1978. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195: 292–294

    Google Scholar 

  • Lindemann, B., VanDriessche, W. 1978. The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin.In: Membrane Transport Processes. J.F. Hoffmann, editor, Vol. I, pp. 155–178. Raven, New York

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder: A model “tight” epithelium.Physiol. Rev. 60: 615–715

    Google Scholar 

  • McManus, O.B., Blatz, A.L., Magleby, K.L. 1987. Sampling, log binning, fitting, and plotting of open and shut intervals from single channels and the effect of noise.Pfluegers Arch. 410: 530–553

    Google Scholar 

  • Nakamura, T., Gold, G.H. 1987. A cyclic nucleotide-gated conductance in olfactory receptor cilia.Nature (London) 325: 442–444

    Google Scholar 

  • Navarte, J., Finn, A.L. 1980. Anion-sensitive sodium conductance in the apical membrane of toad urinary bladder.J. Gen. Physiol. 76: 69–81

    Google Scholar 

  • Neher, E. 1982. Unit conductance studies in biological membranes.Tech. Cell. Physiol. P121: 1–16

    Google Scholar 

  • Nelson, D.J., Tang, J.M., Palmer, L.G. 1984. Single-channel recordings of the apical membrane chloride conductance in A6 epithelial cells.J. Membrane Biol. 80: 81–89

    Google Scholar 

  • Omachi, R.S., Robbie, D.E., Handler, J.S., Orloff, J. 1974. Effect of ADH and other agents on cyclic AMP accumulation in toad bladder epithelium.Am. J. Physiol. 226: 1152–1157

    Google Scholar 

  • Palmer, L.G. 1982. Ion selectivity of the apical membrane Na channel in the toad urinary bladder.J. Membrane Biol. 67: 91–98

    Google Scholar 

  • Palmer, L.G. 1986. Apical membrane K conductance in the toad urinary bladder.J. Membrane Biol. 92: 217–226

    Google Scholar 

  • Palmer, L.G., Edelman, I.S. 1981. Control of apical sodium permeability in the toad urinary bladder by aldosterone.Ann. NY Acad. Sci. 372: 1–14

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1986. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule.Proc. Nat. Acad. Sci. USA 83: 2767–2770

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1987. Effects of cell Ca and pH on Na channels from rat cortical collecting tubule.Am. J. Physiol. 253: F333-F339

    Google Scholar 

  • Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I.S. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64: 91–102

    Google Scholar 

  • Park, C.S., Fanestil, D.D. 1980. Covalent modification and inhibition of an epithelial sodium channel by a tyrosine-reactive reagent.Am. J. Physiol. 239: F299-F306

    Google Scholar 

  • Rae, J.L. 1985. The application of patch clamp methods to ocular epithelia.Curr. Eye Res. 4: 409–420

    Google Scholar 

  • Rae, J.L., Levis, R.A. 1984. Patch voltage clamp of lens epithelial cells: Theory and practice.Molec. Physiol. 6: 115–162

    Google Scholar 

  • Revel, H.R. 1963. Phosphoprotein phosphatase.Methods Enzymol. 6: 211–214

    Google Scholar 

  • Rick, R., Dörge, A., Macknight, A.D.C., Leaf, A., Thurau, K. 1978. Electron microprobe analysis of the different epithelial cells of toad urinary bladder.J. Membrane Biol. 39: 257–271

    Google Scholar 

  • Sakmann, B., Neher, E. 1983. Single Channel Recording. Plenum, New York

    Google Scholar 

  • Sariban-Sohraby, S., Benos, D. 1986. The amiloride sensitive sodium channel.Am. J. Physiol. 250: C175-C190

    Google Scholar 

  • Sariban-Sohraby, S., Burg, M., Wiesmann, W.P., Chiang, P.K., Johnsohn, J.P. 1984a. Methylation increases sodium transport into A6 apical membrane vesicles: Possible mode of aldosterone action.Science 225: 745–746

    Google Scholar 

  • Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., Benos, D. 1984b. Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes.Nature (London) 308: 80–82

    Google Scholar 

  • Schlondorff, D., Franki, N. 1980. Effect of vasopressin on cyclic AMP-dependent protein kinase in toad urinary bladder.Biochim. Biophys. Acta 628: 1–12

    Google Scholar 

  • Sheffner, A.L. 1963. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent,n-acetyl-l-cysteine.Ann. NY Acad. Sci. 106: 298–310

    Google Scholar 

  • Shuster, M.J., Camardo, J.S., Siegelbaum, S.A., Kandel, E.R. 1985. Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels ofAplysia sensory neurones in cell-free membrane patches.Nature (London) 313: 392–395

    Google Scholar 

  • VanDriessche, W. 1987. Ca2+ channels in the apical membrane of the toad urinary bladder.Pfluegers Arch. 410: 243–249

    Google Scholar 

  • VanDriessche, W., Aelvoet, I., Erlij, D. 1987. Oxytocin and cAMP stimulate monovalent cation movements through a Ca2+-sensitive, amiloride-insensitive channel in the apical membrane of the toad urinary bladder.Proc. Nat. Acad. Sci. USA 84: 313–317

    Google Scholar 

  • VanDriessche, W., Zeiske, W. 1985. Ionic channels in epithelial cell membranes.Physiol. Rev. 65: 833–903

    Google Scholar 

  • Wills, N.K., Zweifach, A. 1987. Recent advances in the characterization of epithelial ion channels.Biochim. Biophys. Acta 906: 1–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frings, S., Purves, R.D. & Macknight, A.D.C. Single-channel recordings from the apical membrane of the toad urinary bladder epithelial cell. J. Membrain Biol. 106, 157–172 (1988). https://doi.org/10.1007/BF01871398

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871398

Key Words

Navigation