Skip to main content
Log in

Comparison of a lipophilic cation and microelectrodes to measure membrane potentials of the giant-celled algae,Chara australis (Charophyta) andGriffithsia monilis (Rhodophyta)

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The vacuolar equilibrium potential of the lipophilic cation TPMP+ (triphenyl methyl phosphonium) in the giant algaeChara australis andGriffithsia monilis was directly measured. The TPMP+ equilibrium potential was approximately 100mV less negative than the measured vacuolar electrical potential. Thus TPMP+ does not act as a probe of the vacuolar electrical potential and appears to be extruded against an electrochemical gradient. Measurement of the plasmalemma equilibrium potential of TPMP+ showed that extrusion of TPMP+ apparently occurred at both the tonoplast and plasmalemma inChara and at the plasmalemma inGriffithsia. It is concluded that TPMP+ cannot be used as a membrane potential probe inChara orGriffithsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkins, G.L. 1969. Multicompartment Models in Biological Systems. Methuen and Co., London

    Google Scholar 

  • Bakker, E.P. 1978. Accumulation of thallous ions (Tl+) as a measure of the electrical potential difference across the cytoplasmic membrane of bacteria.Biochemistry 17:2899–2904

    PubMed  Google Scholar 

  • Barts, P.W.J.A., Hoeberichts, J.A., Klaassen, A., Borst-Pauwels, G.W.F.H. 1980. Uptake of the lipophilic cation dibenzyldimethylammonium intoSaccharomyces cerevisiae.Biochim. Biophys. Acta 597:125–136

    PubMed  Google Scholar 

  • Beardall, J., Raven, J.A. 1981. Transport of inorganic carbon and the ‘CO2 concentrating mechanism’ inChlorella emersonii (Chlorophyceae).J. Phycol. 17:134–141

    Google Scholar 

  • Bisson, M.A., Kirst, G.O. 1979a. Osmotic adaption in the marine algaGriffithsia monilis (Rhodophyceae): The role of ions and organic compounds.Aust. J. Plant Physiol. 6:523–538

    Google Scholar 

  • Bisson, M.A., Kirst, G.O. 1979b Regulation of turgor pressure in marine algae: Ions and low-molecular-weight organic compounds.Aust. J. Plant Physiol. 6:539–556

    Google Scholar 

  • Bostrom, T.E. 1976. Intercellular Transport of Ions inChara australis. Ph.D. Thesis. The University of Sydney

  • Briggs, G.E., Hope, A.B., Robertson, R.N. 1961. Electrolytes and Plant Cells. Blackwell Scientific Publ., Oxford

    Google Scholar 

  • Cheng, F., Haspel, H.C., Vallano, M.L., Osotimehin, B., Sonenberg, M. 1980. Measurement of membrane potentials (Ψ) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation.J. Membrane Biol. 56:191–201

    Google Scholar 

  • Findlay, G.P., Hope, A.B., Williams, E.J. 1969. Ionic relations of marine algae. I.Griffithsia: membrane electrical properties.Aust. J. Biol. Sci. 22:1163–1178

    Google Scholar 

  • Findlay, G.P., Hope, A.B., Williams, E.J. 1970. Ionic relations of marine algae. II.Griffithsia: ionic fluxes.Aust. J. Biol. Sci. 23:323–338

    Google Scholar 

  • Ghazi, A., Schechter, E., Letellier, L., Labedan, B. 1981. Probes of membrane potential inEscherichia coli cells.FEBS Lett. 125:197–200

    PubMed  Google Scholar 

  • Grinius, L.L., Jasaitis, A.A., Kadziauskas, Yu.P., Liberman, E.A., Skulachev, V.P., Topali, V.P., Tsofina, L.M., Vladimorova, M.A. 1970. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles.Biochim. Biophys. Acta 217:1–12

    PubMed  Google Scholar 

  • Harold, P.M., Papineau, D. 1972. Cation transport and electrogenesis byStreptococcus faecalis. I. Membrane potential.J. Membrane Biol. 8:27–44

    Google Scholar 

  • Hauer, R., Hofer, M. 1978. Evidence for interactions between the energy-dependent transport of sugars and the membrane potential in the yeastRhodotorula gracilis (Rhodosporidium toruloides).J. Membrane Biol. 43:335–349

    Google Scholar 

  • Hoek, J.B., Nicholls, D.C., Williamson, J.R. 1980. Determination of the mitochondrial protonmotive force in isolated hepatocytes.J. Biol. Chem. 255:1458–1464

    PubMed  Google Scholar 

  • Hope, A.B. 1971. Ion Transport and Membranes: A Biophysical Outline. Butterworths, London

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1975. The Physiology of Giant Algal Cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Kamo, N., Muratsugu, M., Hongoh, R., Kobatake, Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in the steady state.J. Membrane Biol. 49:105–121

    Google Scholar 

  • Komor, E., Tanner, W. 1976. The determination of the membrane potential ofChlorella vulgaris: Evidence for electrogenic sugar transport.Eur. J. Biochem. 70:197–204

    PubMed  Google Scholar 

  • Larkum, A.W.D., Weyrauch, S.K. 1977. Photosynthetic action spectra and light harvesting inGriffithsia monilis (Rhodophyta).Photochem. Photobiol. 25:65–72

    Google Scholar 

  • Liberman, E.A., Topali, V.P., Tsofina, L.M., Jasaitis, A.A., Skulachev, V.P. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria.Nature (London) 222:1076–1078

    Google Scholar 

  • Lichtshtein, D., Kaback, H.R., Blume, A.J. 1979. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions.Proc. Natl. Acad. Sci. USA 76:650–654

    PubMed  Google Scholar 

  • Mewes, H.-W., Rafael, J. 1981. The 2-(dimethylaminostyril)-1-methylpyridinium cation as indicator of the mitochondrial membrane potential.FEBS Lett. 131:7–10

    PubMed  Google Scholar 

  • Michel, H., Oesterhelt, D. 1976. Light-induced changes of the pH gradient and the membrane potential inH. halobium.FEBS Lett. 65:175–178

    PubMed  Google Scholar 

  • Mitchell, P. 1966. Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Glynn Research Ltd., Bodmin, Cornwall, England

    Google Scholar 

  • Mitchell, P., Moyle, J. 1969. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria.Eur. J. Biochem. 7:471–484

    PubMed  Google Scholar 

  • Raven, J.A. 1976. Transport in algal cells.In: Encyclopedia of Plant Physiology, New Series. U. Lüttge and M.G. Pitman, editors. Vol. 2, Part A: Cells, pp. 129–188. Springer-Verlag, Heidelberg

    Google Scholar 

  • Reed, R.H., Collins, J.C. 1981. Membrane potential measurements of marine macroalgae:Porphyra purpurea andUlva lactuca.Plant Cell Environ. 4:257–260

    Google Scholar 

  • Ritchie, R.J., Larkum, A.W.D. 1982. Cation exchange properties of the cell walls ofEnteromorpha intestinalis (L.) link. (Ulvales, Chlorophyta).J. Exp. Bot. 33:125–139

    Google Scholar 

  • Rubenstein, B. 1978. Use of lipophilic cations to measure the membrane potential of oat leaf protoplasts.Plant Physiol. 62:927–929

    Google Scholar 

  • Smith, P.T., Walker, N.A. 1981. Studies on the perfused plasmalemma ofChara corallina: I. Current-voltage curves: ATP and potassium dependence.J. Membrane Biol. 60:223–236

    Google Scholar 

  • Stein, J.R. 1973. Phycological Methods: Culture Methods and Growth measurements. Cambridge University Press, Cambridge

    Google Scholar 

  • Tanner, W. 1980. Proton sugar cotransport in lower and higher plants.Ber. Dtsch. Bot. Ges. 93:167–176

    Google Scholar 

  • Walker, N.A. 1982. Membrane transport in charophyte plants: Chemiosmotic but electrically versatile.In: Membranes and Transport: A Critical Review. A. Martinosi, editor. Plenum Press, New York (in press)

    Google Scholar 

  • Walker, N.A., Pitman, M.G. 1976. Measurement of fluxes across membranes.In: Encyclopedia of Plant Physiology, New Series. U. Lüttge and M.G. Pitman, editors. Vol. 2, Part A: Cells. pp. 93–126. Springer-Verlag, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.J. Comparison of a lipophilic cation and microelectrodes to measure membrane potentials of the giant-celled algae,Chara australis (Charophyta) andGriffithsia monilis (Rhodophyta). J. Membrain Biol. 69, 57–63 (1982). https://doi.org/10.1007/BF01871242

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871242

Key words

Navigation