Skip to main content
Log in

Translation and functional expression of cell-cell channel mRNA inXenopus oocytes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

mRNA from estrogen-stimulated rat myometrium, a tissue known to upregulate cell-cell channels in response to this hormone, was microinjected intoXenopus laevis oocytes. The oocytes had been freed from covering layers of follicle cells and vitelline to allow direct cell membrane interactions when paired. About 4 hours after the mRNA injection, paired oocytes become electrically coupled. This coupling was due to the presence of typical cell-cell channels characterized by size-limited intercellular tracer flux, the presence of gap junctions at the oocyte-oocyte interface, and the reversible uncoupling that occurred in the presence of carbon dioxide. The induction of new cell-cell channels in the oocyte membrane was observed against a zero background or a low level of endogenous coupling, depending on the maturation stage of the oocytes. The time course of development of cell-cell coupling after the microinjection of mRNA was determined. The mRNA capable of inducing cell-cell coupling was confined to an intermediate size class when fractionated on a sucrose gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azarnia, R., Dahl, G., Loewenstein, W.R. 1981. Cell junction and cyclic AMP: III. Promotion of junctional membrane permeability and junctional membrane particles in a junction-deficient cell-type.J. Membrane Biol. 63:133–146

    Google Scholar 

  • Browne, C.L., Wiley, H.S., Dumont, J.N. 1979. Oocyte-follicle cell gap junctions inXenopus laevis and the effects of gonadotropin on their permeability.Science 203:182–183

    Google Scholar 

  • Caspar, D.L.C., Goodenough, D.A., Makowski, L., Phillips, W.C. 1977. Gap junction structures: I. Correlated electron microscopy and X-ray diffraction.J. Cell. Biol. 74:605–628

    Google Scholar 

  • Chao, N., Young, S.H., Poo, M. 1981. Localization of cell membrane components by surface diffusion into a “trap”.Biophys. J. 36:139–153

    Google Scholar 

  • Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rutter, W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 18:5294–5299

    Google Scholar 

  • Dahl, G., Azarnia, R., Werner, R. 1980. De novo construction of cell-to-cell channels.In Vitro 16:1068–1075

    Google Scholar 

  • Dahl, G., Azarnia, R., Werner, R. 1981. Induction of cell-cell channel formation by mRNA.Nature (London) 289:683–685

    Google Scholar 

  • Dahl, G., Berger, W. 1978. Nexus formation in the myometrium during parturition and induced by estrogen.Cell Biol. Int. Rep. 2:381–387

    Google Scholar 

  • Dumont, J.N. 1972. Oogenesis inXenopus laevis (Daudin).J. Morphol. 136:153–180

    Google Scholar 

  • Fallon, R.F., Goodenough, D.A. 1981. Five-hour half-life of mouse liver gap junction protein.J. Cell Biol. 90:521–526

    Google Scholar 

  • Finbow, M., Yancey, S.B., Johnson, R., Revel, J.P. 1980. Independent lines of evidence suggesting a major gap junctional protein with a molecular weight of 26,000.Proc. Natl. Acad. Sci. USA 77:970–974

    Google Scholar 

  • Garfield, R.E., Kanaan, M.S., Daniel, E.E. 1980. Gap junction formation in myometrium: Control by estrogens, progesterone, and prostaglandins.Am. J. Physiol. 238:C81-C89

    Google Scholar 

  • Gilula, N.B., Epstein, M.L., Beers, W.H. 1978. Cell-to-cell communication and ovulation: A study of the cumulus-oocyte complex.J. Cell Biol. 78:58–75

    Google Scholar 

  • Goodenough, D.A. 1976. In vitro formation of gap junctional vesicles.J. Cell Biol. 68:220–232

    Google Scholar 

  • Gundersen, C.B., Miledi, R., Parker, I. 1984. Messenger RNA from human brain induces drug- and voltage-operated channels inXenopus oocytes.Nature (London) 308:421–424

    Google Scholar 

  • Gurdon, J.B., Lingrel, J.B., Marbaiz, G. 1973. Message stability in infected frog oocytes: Long life of mammalian alpha and beta globulin messages.J. Mol. Biol. 80:539–551

    Google Scholar 

  • Henderson, D., Eibl, H., Weber, K. 1979. Structure and biochemistry of mouse hepatic gap junctions.J. Mol. Biol. 132:193–218

    Google Scholar 

  • Henderson, D., Weber, K. 1982. Immunological analysis of gap junction proteins from liver, lens and heart muscle.Biol. Cell 45:229a

    Google Scholar 

  • Hertzberg, E.C., Gilula, N.B. 1978. Isolation and characterization of gap junctions from rat liver.J. Biol. Chem. 254:2138–2147

    Google Scholar 

  • Kusano, K., Miledi, R., Stinnakre, J. 1982. Cholinergic and cate-cholaminergic receptors in theXenopus oocyte membrane.J. Physiol. (London) 328:143–170

    Google Scholar 

  • Lane, C., Knowland, J. 1975. The injection of mRNA into living cells: The use of frog oocytes for the assay of mRNA in the study of the control of gene expression.In: The Biochemistry of Animal Development. R. Weber, editor. Vol. 3, pp. 145–181. Academic, New York

    Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–912

    Google Scholar 

  • Makowski, L., Caspar, D.L.C., Phillips, W.C., Goodenough, D.A. 1977. Gap junction structures: II. Analysis of the X-ray diffraction data.J. Cell Biol. 74:629–645

    Google Scholar 

  • Manjunath, C.K., Goings, G.E., Page, E. 1984. Cytoplasmic surface and intramembrane components of rat heart gap junctional proteins.Am. J. Physiol. 246:H865-H875

    Google Scholar 

  • Miledi, R., Parker, I., Sumikawa, K. 1982. Properties of acetylcholine receptors translated by cat muscle mRNA inXenopus oocytes.EMBO J 1:1307–1312

    Google Scholar 

  • Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., Numa, S. 1984. Expression of functional acetylcholine receptor from cloned cDNAs.Nature (London) 307:604–608

    Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., Numa, S. 1984. Primary structure ofElectrophorus electricus sodium channel deduced from cDNA sequence.Nature (London) 312:121–127

    Google Scholar 

  • Preus, D., Johnson, A., Sheridan, J. 1981. Gap junctions between Novikoff hepatoma cells following dissociation and recovery in the absence of cell contact.J. Ultrastruct. Res. 77:248–262

    Google Scholar 

  • Rose, B., Rick, R. 1978. Intracellular pH, intracellular free Ca, and junctional cell-cell coupling.J. Membrane Biol. 44:377–415

    Google Scholar 

  • Socolar, S.J., Loewenstein, W.R. 1979. Methods for studying transmission through permeable cell-to-cell junctions.In: Methods in Membrane Biology. E. Korn, editor. Vol. 10, pp. 121–177. Plenum, New York

    Google Scholar 

  • Spray, D.C., Harris, A.L., Bennett, M.V.L. 1981. Gap junctional conductance is a simple and sensitive function of intracellular pH.Science 211:712–714

    Google Scholar 

  • Suzuki, Y., Gage, L.P., Brown, D.D. 1972. The genes for silk fibroin inBombyx mori.J. Mol. Biol. 70:637–649

    Google Scholar 

  • Turin, L., Warner, A. 1977. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo.Nature (London) 270:56–57

    Google Scholar 

  • Unwin, P.N.T., Zampighi, G. 1980. Structure of the junction between communicating cells.Nature (London) 283: 545–549

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, R., Miller, T., Azarnia, R. et al. Translation and functional expression of cell-cell channel mRNA inXenopus oocytes. J. Membrain Biol. 87, 253–268 (1985). https://doi.org/10.1007/BF01871226

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871226

Key Words

Navigation