Skip to main content
Log in

Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “Electrogenic” transport revealed by current-voltage and difference-current-voltage analysis

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The steady-state, current-voltage (I–V) characteristics of stomatal guard cells fromVicia faba L. were explored by voltage clamp using conventional electrophysiological techniques, but with double-barrelled microelectrodes containing 50mm K+-acetate. Attention was focused, primarily, on guard cell response to metabolic blockade. Exposures to 0.3–1.0mm NaCN and 0.4mm salicylhydroxamic acid (SHAM) lead consistently to depolarizing (positive-going) shifts in guard cell potentials (V m ), as large as +103 mV, which were generally complete within 60–90 sec (mean response half-time, 10.3±1.7 sec); values forV m in NaCN plus SHAM were close or positive to −100 mV and well removed from the K+ equilibrium potential. Guard cell ATP content, which was followed in parallel experiments, showed a mean half-time for decay of 10.8±1.9 ([ATP] t=0, 1.32±0.28mm; [ATP] t=60−180sec, 0.29±0.40mm). In respiring cells, theI–V relations were commonly sigmoid aboutV m or gently concave to the voltage axis positive toV m . Inward- and outward-rectifying currents were also observed, especially near the voltage extremes (nominally −350 and +50 mV). Short-circuit currents (atV=0 mV) were typically about 200–500 mA m−2. The principal effect of cyanide early on was to linearize theI–V characteristic while shifting it to the right along the voltage axis, to decrease the membrane conductance, and to reduce the short-circuit current by approx. 50–75%. The resulting difference-current-voltage (dI–V) curves (±cyanide) showed a marked sensitivity to voltages negative from −100 mV and, when clamp scans had been extended sufficiently, they revealed a distinct minimum near −300 mV before rising at still more negative potentials. The difference currents, along with changes in guard cell potential, conductance and ATP content are interpreted in context of a primary, ATP-consuming ion pump. FittingdI–V curves to reaction kinetic model for the pump [Hansen, U.-P., et al. (1981)J. Membrane Biol. 63:165; Blatt, M.R. (1986)J. Membrane Biol. 92:91] implicates a stoichiometry of one (+) charge transported outward for each ATP hydrolyzed, with pump currents as high as 200 mA m−2 at the free-running potential. The analysis indicates that the pump can comprise more than half of the total membrane conductance and argues against modulations of pump activity alone, as an effective means to controlling K+ transport for stomatal movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assmann, S., Simoncini, L., Schroeder, J. 1985. Blue light activates electrogenic ion pumping in guard cell protoplasts ofVicia faba.Nature (London) 318:285–287

    Article  Google Scholar 

  • Beilby, M. 1984. Current-voltage characteristics of the proton pump atChara plasmalemma: I. pH dependence.J. Membrane Biol. 81:113–126

    Google Scholar 

  • Beilby, M. 1985. Potassium channels atChara plasmalemma.J. Exp. Bot. 36:228–239

    Google Scholar 

  • Beilby, M.J. 1986. Factors controlling the K+ conductance inChara J. Membrane Biol. 93:187–193

    Google Scholar 

  • Beilby, M., Blatt, M.R. 1986. Simultaneous measurements of cytoplasmic K+ concentration and the plasma membrane electrical parameters in single membrane samples ofCharacorallina.Plant Physiol. 82:417–422

    Google Scholar 

  • Blatt, M.R. 1986. Interpretation of steady-state current-voltage curves: Consequences and implications of current subtraction in transport studies.J. Membrane Biol. 92:91–110

    Article  Google Scholar 

  • Blatt, M.R. 1987a. Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chloride leakage from microelectrodes.Planta 170:272–287

    Article  Google Scholar 

  • Blatt, M.R. 1987b. Fusicoccin, K+ channels and stomatal closure.Plant Physiol. 83:145A

    Google Scholar 

  • Blatt, M.R., Rodriguez-Navarro, A., Slayman, C.L. 1987. Potassium-proton symport inNeurospora: Kinetic control by pH and membrane potential.J. Membrane Biol 98:169–189

    Google Scholar 

  • Blatt, M.R., Slayman, C.L. 1983. KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell.J. Membrane Biol. 72:223–224

    Google Scholar 

  • Blatt, M.R., Slayman, C.L. 1986. Current-voltage analysis as a means to in vivo “separation” of primary electrogenic and coupled secondary transport.In: Molecular and Cellular Aspects of Calcium in plant Development. pp. 409–410. A. Trewavas, editor. Plenum, New York

    Google Scholar 

  • Blatt, M.R., Slayman, C.L. 1987. Role of “active” potassium transport in the regulation of cytoplasmic pH by non-animal cells.Proc. Natl. Acad. Sci. USA 84:2737–2742

    PubMed  Google Scholar 

  • Bowman, B., Slayman, C.W. 1979. The effects of vanadate on the plasma membrane ATPase ofNeurospora crassa.J. Biol. Chem. 254:2928–2934

    PubMed  Google Scholar 

  • Chapman, J.B., Johnson, E.A., Kootsey, J.M. 1983. Electrical and biochemical properties of an enzyme model of the sodium pump.J. Membrane Biol. 74:139–153

    Google Scholar 

  • Cheeseman, J., LaFayette, P., Gronewald, J., Hanson, J. 1980. Effect of ATPase inhibitors on cell potential and K+ influx in corn roots.Plant Physiol. 65:1139–1145

    Google Scholar 

  • Clint, G.M. 1985. The investigation of stomatal ionic relations using guard cell protoplasts. I. Methodology.J. Exptl. Bot. 36:1726–1738

    Google Scholar 

  • Eisenberg, R., Barcilon, V., Mathias, R. 1979. Electrical properties of spherical analysis.Biophys. J. 25:151–180

    PubMed  Google Scholar 

  • Eisenberg, R., Engel, E. 1970., The spatial variation of membrane potential near a small source of current in a spherical cell.J. Gen. Physiol. 55:736–757

    PubMed  Google Scholar 

  • Eisenberg, R.S., Johnson, E.A. 1970. Three-dimensional electrical field problems in physiology.Prog. Biophys. Mol. Biol. 20:1–65

    Google Scholar 

  • Felle, H. 1981. A study of the current-voltage relationships of electrogenic active and passive membrane elements inRiccia fluitans.Biochim. Biophys. Acta 646:151–160

    PubMed  Google Scholar 

  • Felle, H. 1982. Effects of fusicoccin upon membrane potential, resistance and current-voltage characteristics in root hairs ofSinapsis alba.Plant Sci. Lett. 25:219–225

    Google Scholar 

  • Gepstein, S., Jacobs, M., Taiz, L. 1982. Inhibition of stomatal opening inVicia faba epidermal tissue by vanadate and abscisic acid.Plant. Sci. Lett. 28:63–72

    Google Scholar 

  • Goffeau, A., Slayman, C.W. 1981. The proton translocating ATPase of the fungal plasma membrane.Biochim. Biophys. Acta 639:197–223

    PubMed  Google Scholar 

  • Goldsmith, T., Goldsmith, M.-H. 1978. The interpretation of intracellular measurements of membrane potential, resistance, and coupling in cells of higher plants.Planta 143:267–274

    Google Scholar 

  • Gradmann, D. 1975. Analog circuit of theAcetabularia membrane.J. Membrane Biol. 25:183–208

    Google Scholar 

  • Gradmann, D., Hansen, U.-P., Long, W., Slayman, C.L., Warnke, J. 1978. Current-voltage relationships for the plasma membrane and its principal electrogenic pump inNeurospora crassa: I. Steady-state conditions.J. Membrane Biol. 29:333–367

    Google Scholar 

  • Gradmann, D., Hansen, U.-P., Slayman, C.L. 1982. Reaction kinetic analysis of current-voltage relationships for electrogenic pumps inNeurospora andAcetabularia.Curr. Topics Membr. Transp. 16:257–281

    Google Scholar 

  • Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems. I. Steady-state reaction-kinetic analysis of class-I mechanisms.J. Membrane Biol. 63:165–190

    Google Scholar 

  • Hansen, U.-P., Slayman, C.L. 1978. Current-voltage relationships for a clearly electrogenic cotransport systemIn: Membrane Transport Processes. Vol. 1, pp. 141–154. J. Hoffman, editor. Raven, New York

    Google Scholar 

  • Hansen U.-P., Tittor, J., Gradmann, D. 1983. Interpretation of current-voltage relationships for “active” ion transport systems: II. Nonsteady-state reaction-kinetic analysis of class-I mechanisms with one slow-time constant.J. Membrane Biol. 75:141–169

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Jack, J.J.B., Noble, D., Tsien, R.W. 1983. Electric Current Flow in Excitable Cells, Clarendon, Oxford

    Google Scholar 

  • Kishimoto, U., Kami-ike, N., Takeuchi, Y., Ohkawa, T. 1984. A kinetic analysis of the electrogenic pump ofChara corallina: I. Inhibition of the pump by DCCD.J. Membrane Biol. 80:175–183

    Google Scholar 

  • Köhler, K., Bentrup, F.-W. 1983. The effect of fusaric acid upon electrical membrane properties and ATP level in photoautotrophic cell suspension cultures ofChenopodium rubrum L.Z. Pflanzenphysiol. 109:355–361

    Google Scholar 

  • Läuger, P., Stark, G. 1970. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 211:458–466

    PubMed  Google Scholar 

  • Lew, R., Spanswick, R.M. 1984. Characterization of the electrogenicity of soybean roots.Plant Physiol. 75:1–6

    Google Scholar 

  • MacRobbie, E.A.C. 1981. Effects of ABA in ‘isolated’ guard cells ofCommelina communis L.J. Exptl. Bot. 32:563–572

    Google Scholar 

  • MacRobbie, E.A.C. 1983. Effects of light/dark on cation fluxes in guard cells ofCommelina communis L.J. Exptl. Bot. 34:1695–1710

    Google Scholar 

  • MacRobbie, E.A.C. 1987. Stomatal guard cells.In: Ion Transport in Plant Cells and Tissues. J. Hall and D.A. Baker, editors. Pitman, London (in press)

    Google Scholar 

  • Marquardt, D. 1963. An algorithm for least-squares estimation of nonlinear parameters.J. Soc. Ind. Appl. Math. 11:431–441

    Google Scholar 

  • Mercier, A.J., Poole, R.J. 1980. Electrogenic pump activity in red beet: Its relation to ATP levels and to cation influx.J. Membrane Biol. 55:165–174

    Google Scholar 

  • Nakao, M., Gadsby, D.C. 1986. Voltage dependence of Na+ translocation by the Na+/K+ pump.Nature (London) 323:628–630

    Google Scholar 

  • Noble, D. 1962. The voltage dependence of the cardiac membrane conductance.Biophys. J. 2:381–393

    PubMed  Google Scholar 

  • Outlaw, W. 1983. Current concepts on the role of potassium in stomatal movements.Physiol. Plant. 59:302–311

    Google Scholar 

  • Palevitz, B., Hepler, P. 1985. Changes in dye coupling of stomatal cells ofAllium andCommelina demonstrated by microinjection of Lucifer yellow.Planta 164:473–479

    Google Scholar 

  • Poole, R. 1978. Energy coupling for membrane transport.Annu. Rev. Plant Physiol. 29:437–460

    Google Scholar 

  • Press, W., Flannery, B., Teukolsky, S., Vetterling, W. 1986. Numerical recipies: The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Raschke, K. 1979. Movements of stomata.In: Encyclopedia of plant physiology, N.S. Movements of Plants, Vol. 7 pp. 383–441. W. Haupt and M.-E. Feinleib, editors. Springer, Berlin

    Google Scholar 

  • Raschke, K., Humble, G. 1973. No uptake of anions required by opening stomata ofVicia faba: Guard cells release hydrogen ions.Planta 115:47–57

    Google Scholar 

  • Roberts, J.K.M., Lane, A., Clark, R., Nieman, R. 1985. Relationships between rate of synthesis of ATP and the concentrations of reactants and products of ATPhydrolysis in maize root tips, determined by31P-NMR.Arch. Biochem. Biophys. 240:712–722

    PubMed  Google Scholar 

  • Roberts, J.K.M., Wemmer, D., Jardetsky, O. 1984. Measurements of mitochondrial ATPase activity in maize root tips by saturation transfer31P-NMR.Plant Physiol. 74:632–639

    Google Scholar 

  • Saftner, R., Raschke, K. 1981. Electrical potentials in stomatal complexes.Plant Physiol. 67:1124–1132

    Google Scholar 

  • Sanders, D., Hansen, U.-P., Slayman, C.L.. 1981. Role of the plasma membrane proton pump in pH regulation in non-animal cells.Proc. Natl. Acad. Sci. USA 78:5903–5907

    Google Scholar 

  • Sanders, D., Slayman, C.L. 1982. Control of intracellular pH: Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganismNeurospora.J. Gen. Physiol. 80:377–402

    PubMed  Google Scholar 

  • Schroeder, J., Hedrich, R., Fernandez, J. 1984. Potassium-selective single channels in guard cell protoplasts ofVicia faba Nature (London) 312:361–363

    Google Scholar 

  • Scott, I.R., Ellar, D.J. 1978. Metabolism and the triggering of germination ofBacillus megaterium.Biochem. J. 174:627–634

    PubMed  Google Scholar 

  • Shimazaki, K., Gotow, K., Sakaki, T., Kondo, N. 1983. High respiratory activity of guard cell protoplasts fromVicia faba L.Plant Cell Physiol. 24:1049–1056

    Google Scholar 

  • Shimazaki, K., Gotow, K., Kondo, N. 1982. Photosynthetic properties of guard cell protoplast fromVicia faba L.Plant Cell Physiol. 23:871–879

    Google Scholar 

  • Shimazaki, K., Iino, M., Zeiger, E. 1986. Blue light-dependent proton extrusion by guard-cell protoplasts ofVicia faba.Nature (London) 319:324–326

    Google Scholar 

  • Slayman, C.L. 1965. Electrical properties ofNeurospora crassa: Respiration and the intracellular potential.J. Gen. Physiol. 49:93–116

    PubMed  Google Scholar 

  • Slayman, C.L., Long, W., Lu, C.Y.-H. 1973. The relationship between ATP and an electrogenic pump in the plasma membrane ofNeurospora crassa.J. Membrane Biol. 14:305–338

    Google Scholar 

  • Slayman, C.L., Sanders, D. 1985. Steady-state kinetic analysis of an electroenzyme.Symp. Soc. Biochem. 50:11–29

    Google Scholar 

  • Smith, J.R. 1984. The electrical properties of plant cell membranes. II. Distortion of non-linear current-voltage characteristics induced by the cable properties ofChara.Aust. J. Plant Physiol. 11:211–224

    Google Scholar 

  • Smith, J.R., Walker, N.A. 1983. Membrane conductance ofChara measured in the acid and basic zones.J. Membrane Biol. 73:193–202

    Google Scholar 

  • Sokolik, A.I., Yurin, V.M. 1986. Potassium channels in plasmalemma ofNitella cells at rest.J. Membrane Biol. 89:9–22

    Google Scholar 

  • Spanswick, R.M. 1981. Electrogenic ion pumps.Annu. Rev. Plant. Physiol. 32:267–312

    Google Scholar 

  • Swarup, G., Speeg, V., Cohen, S., Garbers, D. 1982. Phosphotyrosyl-protein phosphatase of TCRC-2 cells.J. Biol. Chem. 257:7298–7301

    PubMed  Google Scholar 

  • Sze, H. 1985. H+-translocating ATPases.Annu. Rev. Plant Physiol. 36:175–208

    Google Scholar 

  • Takeshige, K., Shimmen, T., Tazawa, M. 1986. Quantitative analysis of ATP-dependent H+ efflux and pump current driven by an electrogenic pump inNitellopsis obtusa.Plant Cell Physiol. 27:337–348

    Google Scholar 

  • Takeuchi, Y., Kishimoto, U., Ohkawa, T., Kami-ike, N. 1985. A kinetic analysis of the electrogenic pump ofChara corallina: II. Dependence of the pump activity on external pH.J. Membrane Biol. 86:17–26

    Google Scholar 

  • Tracey, A., Gresser, M. 1986. Interaction of vanadate with phenol and tyrosine: Implications for the effects of vanadate on systems regulated by tyrosine phosphorylation.Proc. Natl. Acad. Sci. USA 83:609–613

    PubMed  Google Scholar 

  • Tyerman, S.D., Findlay, G.P., Paterson, G.J. 1986. Inward membrane current inChara inflata. I. A voltage- and timedependent Cl component.J. Membrane Biol. 89:139–152

    Google Scholar 

  • Walker, N.A., Smith, F.A. 1975. Intracellular pH inChara corallina measured by DMO distribution.Plant Sci. Lett. 4:125–132

    Article  Google Scholar 

  • Wille, A., Lucas, W. 1984. Ultrastructural and histochemical studies on guard cells.Planta 160:129–142

    Google Scholar 

  • Zeiger, E. 1983. The biology of stomatal guard cells.Annu. Rev. Plant Physiol. 34:441–475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatt, M.R. Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “Electrogenic” transport revealed by current-voltage and difference-current-voltage analysis. J. Membrain Biol. 98, 257–274 (1987). https://doi.org/10.1007/BF01871188

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871188

Key Words

Navigation