Skip to main content
Log in

Blockade of potassium channels in the plasmalemma ofChara corallina by tetraethylammonium, Ba2+, Na+ and Cs+

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.M. 1975. Ionic pores, gates, and gating currents.Q. Rev. Biophys. 7:179–210

    Google Scholar 

  • Armstrong, C.M., Swenson, R.P., Jr., Taylor, S.R. 1982. Block of the squid axon K+ channels by internally and externally applied Ba2+ ions.J. Gen. Physiol. 80:663–682

    Google Scholar 

  • Azimov, R.R., Geletyuk, V.I., Berestovsky, G.N. 1987. Single potential-dependent K+ channel of the cells of the algaNitellopsis obtusa.Biophysics 32:82–88

    Google Scholar 

  • Barry, W.H. 1968. Coupling of excitation and cessation of cyclosis inNitella: Role of divalent cations.J. Cell Physiol. 72:153–159

    Google Scholar 

  • Beilby, M.J. 1985. Potassium channels atChara plasmalemma.J. Exp. Bot. 36:228–239

    Google Scholar 

  • Beilby, M.J. 1986a. Potassium channels and different states ofChara plasmalemma.J. Membrane Biol. 89:241–249

    Google Scholar 

  • Beilby, M.J. 1986b. Factors controlling the K+ conductance inChara.J. Membrane Biol. 93:187–193

    Google Scholar 

  • Beilby, M.J., Beilby, B.N. 1983. Potential dependence of the admittance ofChara plasmalemma.J. Membrane Biol. 74:229–245

    Google Scholar 

  • Beilby, M.J., Coster, H.G.L. 1979. The action potential inChara corallina. II. Two activation-inactivation transients in voltage clamps of the plasmalemma.Aust. J. Plant Physiol. 6:323–335

    Google Scholar 

  • Belton, P., Netton, C. van 1971. The effects of pharmacological agents on the electrical responses of cells ofNitella flexilis.Can. J. Physiol. Pharmacol. 49:824–832

    Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2:259–323

    Google Scholar 

  • Eisenman, G., Krasne, S.J. 1975. The ion selectivity of carrier molecules, membranes and enzymes.In: Biochemistry of Cell Walls and Membranes. MTP International Review of Science, Biochemistry Series 1, Vol. 2. C.F. Fox, editor, pp. 27–59. Butterworths, London

    Google Scholar 

  • Eisenman, G., Latorre, R., Miller, C. 1986. Multi-ion conduction and selectivity in the high-conductance Ca2+-activated K+ channel.Biophys. J. 50:1025–1034

    Google Scholar 

  • Findlay, G.P., Tyerman, S.D., Paterson, G.J. 1988. Potassium channels in the plasmalemma ofChara inflata.In: Proceedings of the Seventh International Workshop on Plant Membrane Transport, Sydney, Australia, 1986. M.J. Beilby, J.R. Smith, and N.A. Walker, editors. University of Sydney Press, Sydney, Australia (in press)

    Google Scholar 

  • Findlay, I., Dunne, M.J., Petersen, O.H. 1985. ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells.J. Membrane Biol. 88: 165–172

    Google Scholar 

  • French, R.J., Wells, J.B. 1977. Sodium ions as blocking agents and charge carriers in the potassium channel of the squid axon.J. Gen. Physiol. 70:707–724

    Google Scholar 

  • Gitter, A.H., Beyenbach, K.W., Christine, C.W., Gross, P., Minuth, W.W., Fromter, E. 1987. High-conductance K+ channel in apical membranes of principle cells cultured from rabbit renal cortical collecting duct anlagen.Pfluegers Arch. 408:282–290

    Google Scholar 

  • Gorman, A.L.F., Woolum, J.C., Cornwall, M.C. 1982. Selectivity of the Ca2+-activated and light-dependent K channels for monovalent cations.Biophys. J. 38:319–322

    Google Scholar 

  • Hermann, A., Gorman, A.L.F. 1981. Effects of tetraethylammonium on potassium currents in a molluscan neuron.J. Gen. Physiol. 78:87–110

    Google Scholar 

  • Hess, P., Tsien, R.W. 1984. Mechanism of ion permeation through calcium channels.Nature (London) 309:453–456

    Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer, Sunderland

    Google Scholar 

  • Hille, B., Schwarz, W. 1978. Potassium channels as multi-ion single-file pores.J. Gen. Physiol. 72:409–442

    Google Scholar 

  • Keifer, D.W., Lucas, W.J. 1982. Potassium channels inChara corallina. Control and interaction with the electrogenic H+ pump.Plant Physiol. 69:781–788

    Google Scholar 

  • Kikuyama, M. 1986. Tonoplast action potential ofCharaceae.Plant Cell Physiol. 27:1461–1468

    Google Scholar 

  • Kitasato, H. 1973. K permeability ofNitella clavata in the depolarised state.J. Gen. Physiol. 62:535–549

    Google Scholar 

  • Koppenhöfer, E. 1972. Die Wirkung von Kupfer, TTX, Cocain und TEA auf das Ruhe- und Aktionspotential vonNitella.Pfluegers Arch. 336:299–309

    Google Scholar 

  • Latorre, R. 1986. The large calcium-activated potassium channel.In: Ion Channel Reconstitution. C. Miller, editor. pp. 431–467. Plenum, New York

    Google Scholar 

  • Lunevsky, V.Z., Zherelova, O.M., Vostrikov, I.Y., Berestovsky, G.N. 1983. Excitation ofCharaceae cell membranes as a result of activation of calcium and chloride channels.J. Membrane Biol. 72:43–58

    Google Scholar 

  • Miller, C. 1982.Bis-quaternary ammonium blockers as structural probes of the sarcoplasmic reticulum K+ channel.J. Gen. Physiol. 79:869–891

    Google Scholar 

  • Miller, C., Latorre, R., Reisin, I. 1987. Coupling of voltage-dependent gating and Ba++ block in the high-conductance, Ca++-activated K+ channel.J. Gen. Physiol. 90:427–449

    Google Scholar 

  • Netton, C. van, Belton, P. 1978.45Ca displacement related to pharmacologically induced prolonged action potentials inNitella flexilis.Can. J. Physiol. Pharmacol. 56:294–298

    Google Scholar 

  • Plaks, A.V., Sokolik, A.I., Yurin, V.M. 1987. Transport properties of the plasmalemma inNitella cells deprived of the tonoplast.Soviet Plant Physiol. 34:271–276

    Google Scholar 

  • Schauf, C.L., Wilson, K.J. 1987a. Effects of abscisic acid on K+ channels inVicia faba guard cell protoplasts.Biochem. Biophys. Res. Commun. 145:284–290

    Google Scholar 

  • Schauf, C.L., Wilson, K.J. 1987b. Properties of single K+ and Cl channels inAsclepias tuberosa protoplasts.Plant Physiol. 85:413–418

    Google Scholar 

  • Schroeder, J.I., Raschke, K., Neher, E. 1987. Voltage dependence of K+ channels in guard cell protoplastsProc. Natl. Acad. Sci. USA 84:4108–4112

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1983. Activation of K+-channel in membrane excitation ofNitella axilliformis.Plant Cell Physiol. 24:1511–1524

    Google Scholar 

  • Smith, J.R., Kerr, R.J. 1987. Potassium transport across the membranes ofChara. IV. Interactions with other ions.J. Exp. Bot. 38:788–799

    Google Scholar 

  • Sokolik, A.I., Yurin, V.M. 1981. Transport properties of potassium channels of the plasmalemma ofNitella cells at rest.Soviet Plant Physiol. 28:206–212

    Google Scholar 

  • Sokolik, A.I., Yurin, V.M. 1986. Potassium channels in plasmalemma ofNitella cells at rest.J. Membrane Biol. 89:9–22

    Google Scholar 

  • Stanfield, P.R. 1983. Tetraethylammonium ions and the potassium permeability of excitable cells.Rev. Physiol. Biochem. Pharmacol. 97:1–67

    Google Scholar 

  • Tester, M. 1988a. Pharmacology of K+ channels in the plasmalemma of the green alga,Chara corallina.J. Membrane Biol. 103:159–169

    Google Scholar 

  • Tester, M. 1988b. Potassium channels in the plasmalemma ofChara corallina are multi-ion pores: Voltage-dependent blockade by Cs+ and anomalous permeabilities.J. Membrane Biol. 105:87–94

    Google Scholar 

  • Thaler, M., Steigner, W., Kohler, K., Simonis, W., Urbach, W. 1987. Releases of repetitive transient potentials and opening of potassium channels by barium inEremosphaera viridis.FEBS Lett. 219:351–354

    Google Scholar 

  • Tsien, R.W. 1983. Calcium channels in excitable cell membranes.Annu. Rev. Physiol. 45:341–358

    Google Scholar 

  • Tsien, R.W., Hess, P., McCleskey, E.W., Rosenberg, R.L. 1987. Calcium channels: Mechanisms of selectivity, permeation and block.Annu. Rev. Biophys. Biophys. Chem. 16:265–290

    Google Scholar 

  • Vergara, C., Latorre, R. 1983. Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar lipid bilayers: Evidence for a Ca2+ and Ba2+ blockade.J. Gen. Physiol. 83:543–568

    Google Scholar 

  • Vergara, C., Moczydlowski, E., Latorre, R. 1984. Conduction, blockade and gating in a Ca2+-activated K+ channel incorporation into planar lipid bilayers.Biophys. J. 45:73–76

    Google Scholar 

  • Villarroel, A., Alvarez, O., Latorre, R. 1986. Blockade of a Ca-activated K channel by quaternary ammonium ions.Biophys. J. 49:576a (abstr.)

    Google Scholar 

  • Woodhull, A.M. 1973. Ionic blockade of sodium channels in nerve.J. Gen. Physiol. 61:687–708

    Google Scholar 

  • Yellen, G. 1984. Ionic permeation and blockade in Ca2+-activated K+ channels from bovine chromaffin cells.J. Gen. Physiol. 84:157–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tester, M. Blockade of potassium channels in the plasmalemma ofChara corallina by tetraethylammonium, Ba2+, Na+ and Cs+ . J. Membrain Biol. 105, 77–85 (1988). https://doi.org/10.1007/BF01871108

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871108

Key Words

Navigation