Skip to main content
Log in

Conformational transitions and charge translocation by the Na,K pump: Comparison of optical and electrical transients elicited by ATP-concentration jumps

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The electrogenic properties of the Na,K-ATPase were studied by correlating transient electrical events in the pump molecule with conformational transitions elicited by an ATP-concentration jump. Flat membrane fragments containing a high density (∼8000 μm−2) of oriented Na,K-ATPase molecules were bound to a planar lipid bilayer acting as a capacitive electrode. ATP was released in the medium from a photolabile inactive ATP derivative (“caged” ATP) by a 40-μsec light flash. Electrical signals resulting from transient charge movements in the protein under single-turnover conditions were recorded in the external measuring circuit. In parallel experiments carried out under virtually identical conditions, the fluorescence of membrane fragments containing Na,K-ATPase with covalently-bound 5-iodoacetamido-fluorescein (5-IAF) was monitored after the ATP-concentration jump. When the medium contained Na+, but no K+, the fluorescence of the 5-IAF-labeled protein decreases monotonously after release of ATP. In the experiments with membrane fragments bound to a planar bilayer, a transient pump current was observed which exhibited virtually the same time behavior as the fluorescence decay. This indicates that optical and electrical transients are governed by the same rate-limiting reaction step. Experiments with chymotrypsin-modified Na,K-ATPase suggest that both the fluorescence change as well as the charge movement are associated with the deocclusion of Na+ and release to the extracellular side. In experiments with Na+-free K+ media, a large inverse fluorescence change is observed after the ATP-concentration jump, but no charge translocation can be detected. This indicates that deocclusion of K+ is an electrically silent process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, R. W. 1967. Biochemical aspects of active transport.Annu. Rev. Biochem. 36:727–756

    Google Scholar 

  • Alberty, R. A. 1969. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates.J. Biol. Chem. 244:3290–3302

    Google Scholar 

  • Apell, H.-J., Borlinghaus, R., Läuger, P. 1987. Fast charge translocations associated with partial reactions of the Na,K-pump: II. Microscopic analysis of transient currents.J. Membrane Biol. 97:179–191

    Google Scholar 

  • Bahinski, A., Nakao, M., Gadsby, D. C. 1988. Potassium translocation by the Na/K pump is voltage insensitive.Proc. Natl. Acad. Sci. USA 85:3412–3416

    Google Scholar 

  • Borlinghaus, R., Apell, H.-J. 1988. Current transients generated by the Na+/K+-ATPase after an ATP concentration jump: Dependence on sodium and ATP concentration.Biochim. Biophys. Acta 939:197–206

    Google Scholar 

  • Borlinghaus, R., Apell, H.-J., Läuger, P. 1987. Fast charge translocations associated with partial reactions of the Na,K-pump: I. Current and voltage transients after photochemical release of ATP.J. Membrane Biol. 97:161–178

    Google Scholar 

  • Cantley, L. C. 1981. Structure and mechanism of the (Na,K)-ATPase.Curr. Top. Bioenerg. 11:201–237

    Google Scholar 

  • Cantley, L. C., Carili, C. T., Smith, R. L., Perlman, D. 1984. Conformational changes of Na,K-ATPase necessary for transport.Curr. Top. Membr. Transp. 19:315–322

    Google Scholar 

  • De Luca, M., McElroy, W. D. 1978. Purification and properties of firefly luciferase.Methods Enzymol. 57:3–15

    Google Scholar 

  • De Weer, P., Gadsby, D. C., Rakowski, R. F. 1988. Voltage dependence of the Na−K pump.Annu. Rev. Physiol. 50:225–241

    Google Scholar 

  • Ernst, A., Böhme, H., Böger, P. 1983. Phosphorylation and nitrogenase activity in isolated heterocytes fromAnabaena variabilis.Biochim. Biophys. Acta 723:83–90

    Google Scholar 

  • Fendler, K., Grell, E., Bamberg, E. 1987. Kinetics of pump currents generated by the Na+/K+-ATPase.FEBS Lett. 224:83–88

    Google Scholar 

  • Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985. Pump currents generated by the purified Na+,K+-ATPase from kidney on black lipid membranes.EMBO J. 4:3079–3085

    Google Scholar 

  • Forbush, B., III. 1984. Na+ movement in a single turnover of the Na pump.Proc. Natl. Acad. Sci. USA 81:5310–5314

    Google Scholar 

  • Forbush, B., III. 1987a. Rapid release of42K and86Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP.J. Biol. Chem. 262:11104–11115

    Google Scholar 

  • Forbush, B., III. 1987b. Rapid release of42K and86Rb from two distinct transport sites on the Na,K-pump in the presence of Pi or vanadate.J. Biol. Chem. 262:11116–11127

    Google Scholar 

  • Forbush, B., III. 1988. Rapid86Rb release from an occluded state of the Na,K-pump reflects the rate of dephosphorylation or dearsenylation.J. Biol. Chem. 263:7961–7969

    Google Scholar 

  • Fortes, P. A. G., Aguilar, R. 1988. Distance between 5-iodoacetamidofluorescein and the ATP and ouabain sites of (Na,K)-ATPase determined by fluorescence energy transfer.In: The Na+,K+-Pump. Part A: Molecular Aspects. J. C. Skou, J. G. Nørby, A. B. Maunsbach and M. Esman, editors. pp. 197–204. A. R. Liss, New York

    Google Scholar 

  • Glynn, I. M. 1974. The electrogenic sodium pump.In: Electrogenic Transport. M. P. Blaustein and M. Lieberman, editors. pp. 33–48. Raven, New York

    Google Scholar 

  • Glynn, I. M. 1985. The Na+,K+-transporting adenosine triphosphatase.In: The Enzymes of Biological Membranes. (2nd ed.) Vol. 3, pp. 35–114. A. N. Martonosi, editor. Plenum, New York

    Google Scholar 

  • Glynn, I. M., Hara, Y., Richards, D. E. 1984. The occlusion of sodium ions within the mammalian sodium-potassium pump: Its role in sodium transport.J. Physiol. (London) 351:531–547

    Google Scholar 

  • Glynn, I.M., Hara, Y., Richards, D.E., Steinberg, M. 1987. Comparison of rates of cation release and of conformational change in dog kidney Na,K-ATPase.J. Physiol. (London) 383:477–485

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1976. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: Evidence for allosteric effects of intracellular ATP and extracellular sodium.J. Physiol. (London) 256:465–496

    Google Scholar 

  • Glynn, I.M., Richards, D.E. 1982. Occlusion of rubidium ions by the sodium-potassium pump: Its implications for the mechanism of potassium transport.J. Physiol. (London) 330:17–43

    Google Scholar 

  • Goldshlegger, R., Karlish, S.J.D., Rephaeli, A., Stein, W.D. 1987. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.J. Physiol. (London) 387:331–355

    Google Scholar 

  • Hegyvary, C., Jørgensen, P.L. 1981. Conformational changes of renal sodium plus potassium ion transport adenosine triphosphatase labeled with fluorescein.J. Biol. Chem. 256:6296–6303

    Google Scholar 

  • Jørgensen, P.L. 1974. Isolation of the (Na++K+)-ATPase.Methods Enzymol. 32:277–290

    Google Scholar 

  • Jørgensen, P.L. 1982. Mechanism of the Na+,K+ pump. Protein structure and conformations of the purified (Na++K+)-ATPase.Biochim. Biophys. Acta 694:27–68

    Google Scholar 

  • Jørgensen, P.L., Andersen, J.P. 1988. Structural basis for E1–E2 conformational transitions in Na,K-pump and Ca-pump proteins.J. Membrane Biol. 103:95–120

    Google Scholar 

  • Jørgensen, P.L., Collins, J.H. 1986. Tryptic and chymotryptic cleavage sites in the sequence of α-subunit of (Na++K+)-ATPase from outer medulla of mammalian kidney.Biochim. Biophys. Acta 860:570–576

    Google Scholar 

  • Jørgensen, P.L., Karlish, S.J.D. 1980. Defective conformational response in a selectively trypsinized (Na++K+)-ATPase studied with tryptophan fluorescence.Biochim. Biophys. Acta 597:305–317

    Google Scholar 

  • Jørgensen, P.L., Petersen, J. 1985. Chymotryptic cleavage of α-subunit in E1-forms of renal (Na++K+)-ATPase: Effects on enzymatic properties, ligand binding and cation exchange.Biochim. Biophys. Acta 821:319–333

    Google Scholar 

  • Kapakos, J.G., Steinberg, M. 1982. Fluorescent labeling of (Na++K+)-ATPase by 5-iodoacetamidofluorescein.Biochim. Biophys. Acta 693:493–496

    Google Scholar 

  • Kapakos, J.G., Steinberg, M. 1986a. Ligand binding to (Na,K)-ATPase labeled with 5-iodoacetamidofluorescein.J. Biol. Chem. 261:2084–2089

    Google Scholar 

  • Kapakos, J.G., Steinberg, M. 1986b. 5-Iodoacetamidofluorescein-labeled (Na,K)-ATPase. Steady-state fluorescence during turnover.J. Biol. Chem. 261:2090–2096

    Google Scholar 

  • Kaplan, J.H. 1985. Ion movements through the sodium pump.Annu. Rev. Physiol. 47:535–544

    Google Scholar 

  • Kaplan, J.H., Forbush, B., III, Hoffman, J.F. 1978. Rapid photolytic release of adenosine-5′-triphosphate from a protected analogue: Utilization by the Na: K pump of human red blood cell ghosts.Biochemistry 17:1929–1935

    Google Scholar 

  • Karlish, S.J.D. 1980. Characterization of conformational changes in (Na,K)ATPase labeled with fluorescein at the active site.J. Bioenerg. Biomembr. 12:111–135

    Google Scholar 

  • Karlish, S.J.D., Rephaeli, A., Stein, W.D. 1985. Transmembrane modulation of cation transport by the Na,K-pump,In: The Sodium Pump. I. Glynn and C.L. Ellory, editors. pp. 487–499. The Company of Biologists, Cambridge, U.K.

    Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1982. Passive rubidium fluxes mediated by Na−K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.J. Physiol. (London) 328:295–316

    Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1985. Cation activation of the pig kidney sodium pump: Transmembrane allosteric effects of sodium.J. Physiol. (London) 359:119–149

    Google Scholar 

  • Karlish, S.J.D., Yates, D.W. 1978. Tryptophane fluorescence of (Na++K+)-ATPase as a tool for study of the enzyme mechanism.Biochim. Biophys. Acta 527:115–130

    Google Scholar 

  • Karlish, S.J.D., Yates, D.W., Glynn, I.M. 1978a. Elementary steps of the (Na++K+)-ATPase mechanism, studied with formycin nucleotides.Biochim. Biophys. Acta 525:230–251

    Google Scholar 

  • Karlish, S.J.D., Yates, D.W., Glynn, I.M. 1978b. Conformational transitions between Na+-bound and K+-bound forms of (Na++K+)-ATPase, studied with formycin nucleotides.Biochim. Biophys. Acta 525:252–264

    Google Scholar 

  • Läuger, P., Apell, H.-J. 1986. A microscopic model for the current-voltage behaviour of the Na,K-pump.Eur. Biophys. J. 13:305–321

    Google Scholar 

  • Läuger, P., Apell, H.-J. 1988. Transient behaviour of the Na,K-pump: Microscopic analysis of nonstationary ion-translocation.Biochim. Biophys. Acta 944:451–464

    Google Scholar 

  • Läuger, P., Benz, R., Stark, G., Bamberg, E., Jordan, P.C., Fahr, A., Brock, W. 1981. Relaxation studies of ion transport systems in lipid bilayer membranes.Q. Rev. Biophys. 14:513–598

    Google Scholar 

  • Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20–32

    Google Scholar 

  • Lindqvist, L. 1960. A flash photolysis study of fluorescein.Ark. Kemi 16:79–138

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagents.J. Biol. Chem. 193:265–275

    Google Scholar 

  • Mårdh, S. 1975. Bovine brain Na+,K+-stimulated ATP phosphohydrolase studied by a rapid-mixing technique. K+-stimulated liberation of [32P] orthophosphate from [32P] phosphoenzyme and resolution of the dephosphorylation into two phases.Biochim. Biophys. Acta 391:448–463

    Google Scholar 

  • Mårdh, S., Post, R.L. 1977. Phosphorylation from adenosine triphosphate of sodium- and potassium-activated adenosine triphosphatase.J. Biol. Chem. 252:633–638

    Google Scholar 

  • Mårdh, S., Zetterquist, Ö. 1974. Phosphorylation and dephosphorylation reactions of bovine brain (Na++K+)-stimulated ATP phosphohydrolase studied by a rapid-mixing technique.Biochim. Biophys. Acta 350:473–483

    Google Scholar 

  • McCray, J.A., Herbette, L., Kihara, T., Trentham, D.R. 1980. A new approach to time-resolved studies of ATP-requiring biological systems: Laserflash photolysis of caged ATP.Proc. Natl. Acad. Sci. USA 77:7237–7241

    Google Scholar 

  • Mitchell, P., Moyle, J. 1974. The mechanism of proton translocation in reversible proton-translocating adenosine triphosphatases.Biochem. Soc. (Spec. Publ.) 4:91–111

    Google Scholar 

  • Moczydlowski, E.G., Fortes, P.A.G. 1981. Inhibition of sodium and potassium adenosine triphosphatase by 2′,3′,-O-(2,4,6-trinitrocyclohexadienylidene) adenine nucleotide.J. Biol. Chem. 256:2357–2366

    Google Scholar 

  • Nagel, G., Fendler, K., Grell, E., Bamberg, E. 1987. Na+ currents generated by the purified (Na++K+)-ATPase on planar lipid bilayers.Biochim. Biophys. Acta 901:239–249

    Google Scholar 

  • Nakao, M., Gadsby, D.C. 1986. Voltage dependence of Na translocation by the Na/K pump.Nature (London) 323:628–630

    Google Scholar 

  • Nørby, J.G., Klodos, I., Christiansen, N.O. 1983. Kinetics of Na-ATPase activity by the Na,K pump.J. Gen. Physiol. 82:725–759

    Google Scholar 

  • Plesner, L., Plesner, I.W. 1988. Distinction between the intermediates in Na+-ATPase and Na+,K+-ATPase reactions: I. Exchange and hydrolysis kinetics at millimolar nucleotide concentrations.Biochim. Biophys. Acta 937:51–62

    Google Scholar 

  • Post, R.L., Hegyvary, C., Kume, S. 1972. Activation by adneosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase.J. Biol. Chem. 247:6530–6540

    Google Scholar 

  • Rephaeli, A., Richards, D., Karlish, S.J.D. 1986a. Conformational transitions in fluorescein-labeled (Na,K)ATPase reconstituted into phospholipid vesicles.J. Biol. Chem. 261:6248–6254

    Google Scholar 

  • Rephaeli, A., Richards, D., Karlish, S.J.D. 1986b. Electrical potential accelerates the E1P(Na)-E2P conformational transition of (Na,K)ATPase in reconstituted vesicles.J. Biol. Chem. 261:12437–12440

    Google Scholar 

  • Robinson, J.D. 1983. Kinetic analysis and reaction mechanism of the Na,K-ATPase.Curr. Top. Membr. Transp. 19:485–512

    Google Scholar 

  • Robinson, J.D., Flashner, M.S. 1979. The (Na++K+)-activated ATPase. Enzymatic and transport properties.Biochim. Biophys. Acta 549:145–176

    Google Scholar 

  • Schuurmans Stekhoven, F., Bonting, S.L. 1981. Transport adenosin-triphosphatases: Properties and function.Physiol. Rev. 61:1–76

    Google Scholar 

  • Schwartz, A., Nagano, K., Nakao, M., Lindenmayer, G.E., Allen, J.C. 1971. The sodium- and potassium-activated adenosinetriphosphatase system.Methods Pharmacol. 1:361–388

    Google Scholar 

  • Skou, J.C. 1975. The (Na++K+)-activated enzyme system and its relationship to transport of sodium and potassium.Q. Rev. Biophys. 7:401–431

    Google Scholar 

  • Skou, J.C. 1982. The effect of pH, of ATP and of modification with pyridoxal-5-phosphate on the conformational transition between the Na+-form and the K+-form of the (Na++K+) ATPase.Biochim. Biophys. Acta 688:369–380

    Google Scholar 

  • Skou, J.C., Esmann, M. 1981. Eosin, a fluorescent probe of ATP binding to the (Na++K+)-ATPase.Biochim. Biophys. Acta 647:232–240

    Google Scholar 

  • Skou, J.C., Esmann, M. 1983. Effect of magnesium ions on the high-affinity binding of eosin to the (Na++K+)-ATPase.Biochim. Biophys. Acta 727:101–107

    Google Scholar 

  • Steinberg, M., Karlish S.J.D. 1989. Studies on conformational changes in Na,K-ATPase labeled with 5-iodoacetamidofluorescein.J. Biol. Chem. 264:2726–2734

    Google Scholar 

  • Suzuki, K., Taniguchi, K., Iida, S. 1987. The acceleration of Na+,K+-ATPase activity by ATP and ATP analogues.J. Biol. Chem. 262:11752–11757

    Google Scholar 

  • Tanford, C. 1961. Physical Chemistry of Macromolecules. Chap. 8. John Wiley & Sons, New York

    Google Scholar 

  • Taniguchi, K., Suzuki, K., Iida, S. 1983. Stopped flow measurement of conformational change induced by phosphorylation in (Na+,K+)-ATPase modified with N[p-(2-benzimidazolyl)phenyl]maleimide.J. Biol. Chem. 258:6927–6931

    Google Scholar 

  • Tyson, P.A., Steinberg, M., Wallick, E.T., Kirley, T.L. 1989. Identification of the 5-iodoacetamidofluorescein reporter site on the Na,K-ATPase.J. Biol. Chem. 264:726–734

    Google Scholar 

  • Veech, R.L., Lawson, J.W.R., Cornell, N.W., Krebs, H.A. 1979. Cytosolic phosphorylation potential.J. Biol. Chem. 254:6538–6547

    Google Scholar 

  • Yoda, S., Yoda, A. 1986. ADP- and K+-sensitive phosphorylated intermediate of Na,K-ATPase.J. Biol. Chem. 261:1147–1152

    Google Scholar 

  • Yoda, A., Yoda, S. 1987. Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+.J. Biol. Chem. 262:110–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stürmer, W., Apell, H.J., Wuddel, I. et al. Conformational transitions and charge translocation by the Na,K pump: Comparison of optical and electrical transients elicited by ATP-concentration jumps. J. Membrain Biol. 110, 67–86 (1989). https://doi.org/10.1007/BF01870994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870994

Key Words

Navigation