Skip to main content
Log in

Pharmacology of K+ channels in the plasmalemma of the green algaChara corallina

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The outer membranes of plant cells contain channels which are highly selective for K+. However, many of their properties and their similarities to K+ channels found in animal cells had not previously been established. The channels open when the cells are depolarized in solutions with a high K+/Ca2+ ratio. In this work, the pharmacology of a previously identified plant K+ channel was examined. This survey showed that the channels have many properties which are similar to those of high-conductance Ca2+-activated K+ channels (highG K+(Ca2+)). K+ currents inChara were reduced by TEA+, Na+, Cs+, Ba2+, decamethonium and quinine, all inhibitors of, among other things, highG K+(Ca2+) channels. Tetracaine also inhibited K+ currentsChara, but its effect on most types of K+ channels in animal tissues is unknown. The currents were not inhibited by 4-aminopyridine (4AP), caffeine, tolbutamide, dendrotoxin, apamin or tubocurarine, which do not inhibit highG K+(Ca2+) channels, but affect other classes of K+ channels. The channels were “locked open” by 4AP, in a remarkably similar manner to that reported for K+(Ca2+) channels of a molluscan neuron. No evidence for the role of the inositol cycle in channel behavior was found, but its role in K+ channel control in animal cells is obscure. Potassium conductance was slightly decreased upon reduction of cytoplasmic ATP levels by cyanide + salicylhydroxamic acid (SHAM), consistent with channel control by phosphorylation. The anomalously strong voltage dependence of blockade by some ions (e.g. Cs+) is consistent with the channels being multiion pores. However, the channels also demonstrate some differences from the highG K+(Ca2+) channels found in animal tissues. The venom of the scorption,Leiurus quinquestriatus (LQV), and a protein component, charybdotoxin (CTX), an apparently specific inhibitor of highG K+(Ca2+) channels in various animal tissues, had no effect on the K+ channels in theChara plasmalemma. Als,, pinacidil, an antihypertensive drug which may increase highG K+(Ca2+) channel activity had no effect on the channels inChara. Although the described properties of theChara K+ channels are most similar to those of high conductance K+(Ca2+) in animal cells, the effects of CTX and pinacidil are notably different; the channels are clearly of a different structure to those found in animal cells, but are possibly related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R.D. 1969. Mechanism of the seismonastic reaction inMimosa pudica.Plant Physiol. 44:1101–1107

    Google Scholar 

  • Almers, W. 1976. Differential effects of tetracaine on delayed potassium currents and contraction of frog skeletal muscle.J. Physiol. (London) 262:613–637

    Google Scholar 

  • Applewhite, P.B. 1972. Drugs affecting sensitivity to stimuli in the plantMimosa and the protozoanSpirostomum.Physiol. Behaviour 9:869–871

    Google Scholar 

  • Arkhammar, P., Nilsson, T., Rorsman, P., Berggren, P.O. 1987. Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic β-cells.J. Biol. Chem. 262:5448–5454

    PubMed  Google Scholar 

  • Armstrong, C.M., Lopez-Barneo, J. 1987. External calcium ions are required for potassium channel gating in squid neurons.Science 236:712–714

    PubMed  Google Scholar 

  • Armstrong, C.M., Matteson, D.R. 1986. The role of calcium ions in the closing of K channels.J. Gen. Physiol. 87:817–832

    PubMed  Google Scholar 

  • Azimov, R.R., Geletyuk, V.I., Berestovsky, G.N. 1987. Single potential-dependent K-channel in the cells of algaeNitellopsis obtusa.Biophysics 32:82–88

    Google Scholar 

  • Beilby, M.J. 1985. Potassium channels atChara plasmalemma.J. Exp. Bot. 36:228–239

    Google Scholar 

  • Beilby, M.J. 1986a. Factors controlling the K+ conductance inChara.J. Membrane Biol. 93:187–193

    Google Scholar 

  • Beilby, M.J.,1986b. Potassium channels and different states ofChara plasmalemma.J. Membrane Biol. 89:241–249

    Google Scholar 

  • Beilby, M.J., Beilby, B.N. 1983. Potential dependence of the admittance ofChara plasmalemma.J. Membrane Biol. 74:229–245

    Google Scholar 

  • Belles, B., Hescheler, J., Trube, G. 1987. Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide.Pfluegers Arch. 409:582–588

    Google Scholar 

  • Benoit, E., Dubois, J.M. 1986. Toxin I from the snakeDendroaspsis polylepis polylepis: A highly specific blocker of one type of potassium channel in myelinated nerve fibre.Brain Res. 377:374–377

    PubMed  Google Scholar 

  • Berridge, M.J. 1984. Inositol trisphosphate and diacylglycerol as second messengers.Biochem. J. 220:345–360

    Google Scholar 

  • Bertl, A., Gradmann, D. 1987. Current-voltage relationships of potassium channels in the plasmalemma ofAcetabularia.J. Membrane Biol. 99:41–49

    Google Scholar 

  • Blatt, M.R. 1987. Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “electrogenic” transport revealed by current-voltage and difference-current voltage analysis.J. Membrane Biol. 98:257–274

    Google Scholar 

  • Blatt, M.R., Slayman, C.L. 1983. KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell.J. Membrane Biol. 72:223–234

    Google Scholar 

  • Blum, R.M., Hoffman, J.F. 1971. The membrane locus of Castimulated K transport in energy depleted human red blood cells.J. Membrane Biol. 6:315–328

    Google Scholar 

  • Bourque, C.W., Brown, D.A. 1987. Apamin andD-tubocurarine block the afterhyperpolarization of rat supraoptic neurosecretory neurons.Neurosci. Lett. 82:185–190

    PubMed  Google Scholar 

  • Brownlee, C., Wood, J.W. 1986. A gradient of cytoplasmic free calcium in growing rhizoid cells ofFucus serrulatus.Nature (London) 320:624–626

    Google Scholar 

  • Carbone, E., Prestipino, G., Spadavecchia, L., Franciolini, F., Possani, L.D. 1987. Blocking of the squid axon K+ channel by noxiustoxin: A toxin from the venom of the scorpionCentruroides noxius.Pfluegers Arch. 408:423–431

    Google Scholar 

  • Carbone, E., Wanke, E., Prestipino, G., Possani, L.D., Maelicke, A. 1982. Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin.Nature (London) 296:90–91

    Google Scholar 

  • Castle, N.A., Haylett, D.G. 1987. Effect of channel blockers on potassium efflux from metabolically exhausted frog skeletal muscle.J. Physiol. (London) 383:31–43

    Google Scholar 

  • Cecchi, X., Wolff, D., Alvarez, O., Latorre, R. 1987. Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle.Biophys. J. 52:707–716

    Google Scholar 

  • Cook, D.L., Hales, C.N. 1984. Intracellular ATP directly blocks K+ channels in pancreatic β-cells.Nature (London) 311:271–273

    Article  Google Scholar 

  • Cook, N.S., Haylett, D.G. 1985. Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea-pig hepatocytes.J. Physiol. (London) 358:373–394

    Google Scholar 

  • Darbon, H., Zlotkin, E., Kopeyan, C., Van Rietschoten, J., Rochat, H. 1982. Covalent structure of the insect toxin ofAndroctonus australis Hector.Toxicon 20:64

    Google Scholar 

  • Dun, N.J., Jiang, Z.G., Mo, N. 1986. Tubocurarine suppresses slow calcium-dependent after-hyperpolarisation in guinea-pig inferior mesenteric ganglion cells.J. Physiol. (London) 375:499–514

    Google Scholar 

  • Eckert, R., Brehm, P. 1979. Ionic mechanisms of excitation inParamecium.Annu. Rev. Biophys. Bioeng 8:353–383

    PubMed  Google Scholar 

  • Ettlinger, C., Lehle, L. 1988. Auxin induces rapid changes in phophatidylinositol metabolites.Nature (London) 331:176–178

    Google Scholar 

  • Findlay, G.P., Hope, A.B. 1964. Ionic relations of cells ofChara australis VII. The separate electrical characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62–77

    Google Scholar 

  • Findlay, I., Dunne, M.J., Ullrich, S., Wollheim, C.B., Petersen, O.H. 1985. Quinine inhibits Ca2+-independent K+ channels whereas tetraethylammonium inhibits Ca2+-activated K+ channels in insulin-secreting cells.FEBS Lett. 185:4–8

    PubMed  Google Scholar 

  • Fishman, M.C., Spector, I. 1981. Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells.Proc. Natl. Acad. Sci. USA 78:5245–5249

    PubMed  Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218–244

    Google Scholar 

  • Gillespie, J.I. 1977. Voltage-dependent blockage of the delayed potassium current in skeletal muscle by 4-aminopyridine.J. Physiol. (London) 273:64P-65P

    Google Scholar 

  • Guggino, S.E., Guggino, W.B., Green, N., Sacktor, B. 1987. Blocking agents of Ca2+-activated K+ channels in cultured medullary thick ascending limb cells.Am. J. Physiol. 252:C128-C137

    PubMed  Google Scholar 

  • Halliwell, J.V., Othman, I.B., Pelchen-Matthews, A., Dolly, J.O. 1986. Central action of dendrotoxin: Selective reduction of a transient K conductance in hippocampus and binding to localized acceptors.Proc. Natl. Acad. Sci. USA 83:493–497

    PubMed  Google Scholar 

  • Harvey, A.L., Karlsson, E. 1980. Dendrotoxin from the venom of the green mamba,Dendroaspis angusticeps.Naunyn Schmeideberg's Arch. Pharmacol. 312:1–6

    Google Scholar 

  • Heim, S., Wagner, K.G. 1986. Evidence of phosphorylated phosphatidylinositols in the growth cycle of suspension cultured plant cells.Biochem. Biophys. Res. Commun. 134:1175–1181

    PubMed  Google Scholar 

  • Hermann, A., Erxleben, C. 1987. Charybdotoxin selectively blocks small Ca-activated K channels inAplysia neurons.J. Gen. Physiol. 90:27–47

    PubMed  Google Scholar 

  • Hermann, A., Gorman, A.L.F. 1980. Dual action of caffeine on K+ conductance.Pfluegers Arch. 384:R-12

    Google Scholar 

  • Hermann, A., Gorman, A.L.F. 1981. Effects of 4-aminopyridine on potassium currents in a molluscan neuron.J. Gen. Physiol. 78:63–86

    PubMed  Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer. Sunderland

    Google Scholar 

  • Hokin, L.E. 1985. Receptors and phosphoinositide-generated second messengers.Annu. Rev. Biochem. 54:205–235

    PubMed  Google Scholar 

  • Hugues, M., Romey, G., Duval, D., Vincent, J.P., Lazdunski, M. 1982. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: Voltageclamp and biochemical characterization of the toxin receptor.Proc. Natl. Acad. Sci. USA 79:1308–1312

    PubMed  Google Scholar 

  • Irvine, R.F., Letcher, A.J., Dawson, R.M.C. 1980. Phosphatidylinositol phosphodiesterase in higher plants.Biochem. J. 192:279–283

    PubMed  Google Scholar 

  • Kakei, M., Noma, A., Shibasaki, T. 1985. Properties of adenosinetriphosphate-regulated potassium channels in guinea-pig ventricular cells.J. Physiol. (London) 363:441–462

    Google Scholar 

  • Keifer, D.W., Lucas, W.J. 1982. Potassium channels inChara corallina. Control and interaction with the electrogenic H+ pump.Plant Physiol. 69:781–788

    Google Scholar 

  • Kitasato, H. 1973. K permeability ofNitella clavata in the depolarized state.J. Gen. Physiol. 62:535–549

    PubMed  Google Scholar 

  • Kiyosawa, K. 1975. Permeabilities of theChara cell wall to saccharides, albumin and Ficoll.Bot. Mag. 88:47–57

    Google Scholar 

  • Kloerke, D.A., Petersen, J., Jorgensen, P.L. 1987. Purification of Ca2+-activated K+ channel protein on calmodulin affinity columns after detergent solubilization of luminal membranes from outer renal medulla.FEBS Lett. 216:211–216

    PubMed  Google Scholar 

  • Kumon, K., Suda, S. 1984. Ionic fluxes from pulvinar cells during the rapid movement ofMimosa pudica L.Plant Cell Physiol. 25:975–979

    Google Scholar 

  • Lackington, I., Orrega, F. 1981. Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs.FEBS Lett. 133:103–106

    Article  PubMed  Google Scholar 

  • Lancaster, B., Nicoll, R.A. 1987. Properties of two calciumactivated hyperpolarizations in rat hippocampal neurones.J. Physiol. (London) 389:187–203

    Google Scholar 

  • Latorre, R. 1986. The large calcium-activated potassium channel.In: Ion Channel Reconstitution. C. Miller, editor. pp. 431–467. Plenum, New York

    Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Lebrun, P., Atwater, I., Claret, M., Malaisse, W.J., Herchuelz, A. 1983. Resistance to apamin of the Ca2+-activated K+ permeability in pancreatic β-cells.FEBS Lett. 161:41–44

    PubMed  Google Scholar 

  • Leneveu, E., Simonneau, M. 1986. Scorpion venom inhibits selectively Ca2+-activated K+ channelsin situ.FEBS Lett. 209:165–168

    PubMed  Google Scholar 

  • Lucero, M.T., Pappone, P.A. 1987.Pandinus imperator scorpion venom blocks K channels in GH3 cells.Biophys. J. 51:54a (abstr.)

    Google Scholar 

  • Lunevsky, V.Z., Zherelova, O.M., Vostrikov, I.Y., Berestovsky, G.N. 1983. Excitation ofCharaceae cell membranes as a result of activation of calcium and chloride channels.J. Membrane Biol. 72:43–58

    Google Scholar 

  • MacKinnon, R., Miller, C. 1987. Charybdotoxin knock off by potassium in a calcium activated potassium channel.Biophys. J. 51:53a (abstr.)

    Google Scholar 

  • MacRobbie, E.A.C. 1962. Ionic relations ofNitella translucens.J. Gen. Physiol. 45:861–878

    Google Scholar 

  • Matthews, E.K. 1986. Calcium and membrane permeability.Br. Med. Bull. 42:391–397

    PubMed  Google Scholar 

  • Miller, C., Moczydlowski, E., Latorre, R., Phillips, M. 1985. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal tissue.Nature (London) 313:316–318

    Google Scholar 

  • Moczydlowski, E., Latorre, R. 1983. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers.J. Gen. Physiol. 82:511–542

    Google Scholar 

  • Moran, N., Ehrenstein, G., Iwasa, K., Bure, C., Mischke, C. 1986. Ionic channels in plant protoplasts.In: Ionic Channels in Cells and Model Systems. R. Latorre, editor. pp. 195–205. Plenum, New York

    Google Scholar 

  • Morris, A.P., Gallacher, D.V., Irvine, R.F., Petersen, O.H. 1987. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels.Nature (London) 330:653–655

    Google Scholar 

  • Morse, M.J., Crain, R.C., Satter, R.L. 1987. Light-stimulated inositol-phospholipid turnover inSamanea saman leaf pulvini.Proc. Natl. Acad. Sci. USA 84:7075–7078

    Google Scholar 

  • Noma, A. 1983. ATP-regulated K+ channels in cardiac muscle.Nature (London) 305:147–148

    Article  Google Scholar 

  • Okada, Y., Yada, T., Ohno-Shosaku, T., Oiki, S. 1987. Evidence for the involvement of calmodulin in the operation of Ca-activated K channels in mouse fibroblasts.J. Membrane Biol. 96:121–128

    Google Scholar 

  • Okazaki, Y., Tazawa, M. 1987. Dependence of plasmalemma conductance and potential on intracellular free Ca2+ in tonoplast-removed cells of a brackish water CharaceaeLamprothamnium.Plant Cell Physiol. 28:703–708

    Google Scholar 

  • Okazaki, Y., Yoshimoto, Y., Hiramoto, Y., Tazawa, M. 1987. Turgor regulation and cytoplasmic free Ca2+ in the algaLamprothamnium.Protoplasma 140:67–71

    Google Scholar 

  • Pennefather, P., Lancaster, B., Adams, P.R., Nicoll, R.A. 1985. Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells.Proc. Natl. Acad. Sci. USA 82:3040–3044

    PubMed  Google Scholar 

  • Penner, R., Peterson, M., Pierau, F.K., Dreyer, F. 1986. Dendrotoxin: A selective blocker of a non-inactivating potassium current in guinea-pig dorsal root ganglion neurones.Pfluegers Arch. 407:365–369

    Google Scholar 

  • Plaks, A.V., Sokolik, A.I., Yurin, V.M. 1987. Transport properties of the plasmalemma inNitella cells deprived of the tonoplast.Soviet Plant Physiol. 34:271–276

    Google Scholar 

  • Raven, J.A. 1968. The linkage of light-stimulated Cl influx to K and Na influxes inHydrodictyon africanum.J. Exp. Bot. 19:233–253

    Google Scholar 

  • Rorsman, P., Trube, G. 1986. Glucose dependent K+-channels in pancreatic β-cells are regulated by intracellular ATP.Pfluegers Arch. 405:305–309

    Google Scholar 

  • Satter, R., Lee, Y., Morse, M.J., Crain, R.C., Cote, G., Moran, N. 1988. Light-and clock-controlled leaflet movements inSamanea saman: A physiological, biophysical and biochemical analysis.Bot. Acta (in press)

  • Schauf, C.L. 1987. Dendrotoxin blocks potassium channels and slows inactivation in myxicola giant axons.J. Pharmacol. Exp. Ther. 241:793–796

    PubMed  Google Scholar 

  • Schauf, C.L., Wilson, K.J. 1987a. Effects of abscisic acid on K+ channels inVicia faba guard cell protoplasts.Biochem. Biophys. Res. Commun. 145:284–290

    PubMed  Google Scholar 

  • Schauf, C.L., Wilson, K.J. 1987b. Properties of single K+ and Cl channels inAsclepias tuberosa protoplasts.Plant Physiol. 85:413–418

    Google Scholar 

  • Schroeder, J.I., Hedrich, R., Fernandez, J.M. 1984. Potassiumselective single channels in guard cell protoplasts ofVicia faba.Nature (London) 312:361–362

    Google Scholar 

  • Schroeder, J.I., Raschke, K., Neher, E. 1987. Voltage dependence of K+ channels in guard cell protoplasts.Proc. Natl. Acad. Sci. USA 84:4108–4112

    Google Scholar 

  • Schwarz, W., Passow, H. 1983. Ca2+-activated K+ channels in erythrocytes and excitable cells.Annu. Rev. Physiol. 45:359–374

    Google Scholar 

  • Smart, T.G. 1987. Single calcium-activated potassium channels recorded from cultured rat sympathetic neurones.J. Physiol. (London) 389:337–360

    Google Scholar 

  • Smith, J.R. 1984. The electrical properties of plant cell membranes. II. Distortion of non-linear current-voltage characteristics induced by the cable properties ofChara.Aust. J. Plant Physiol. 11:211–224

    Google Scholar 

  • Smith, C., Phillips, M., Miller, C. 1986. Purification of charybdotoxin, a specific inhibitor of the high-conductance Ca2+-activated K+ channel.J. Biol. Chem. 261:14607–14613

    PubMed  Google Scholar 

  • Sokolik, A.I., Yurin, V.M. 1986. Potassium channels in plasmalemma ofNitella cells at rest.J. Membrane Biol. 89:9–22

    Google Scholar 

  • Stansfield, C.E., Marsh, S.J., Halliwell, J.V., Brown, D.A. 1986. 4-aminopyridine and dendrotoxin induce repetitive firing in rat visceral sensory neurones by blocking a slowly inactivating outward current.Neurosci. Lett. 64:299–304

    PubMed  Google Scholar 

  • Tester, M., Beilby, M.J., Shimmen, T. 1987. Electrical characteristics of the tonoplast ofChara corallina: A study using permeabilised cells.Plant Cell Physiol. 28:1555–1568

    Google Scholar 

  • Thompson, S.H. 1977. Three pharmacologically distinct potassium channels in molluscan neurones.J. Physiol. (London) 265:465–488

    Google Scholar 

  • Trube, G., Rorsman, P., Ohno-Shosaku, T. 1986. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells.Pfluegers Arch. 407:493–499

    Google Scholar 

  • Villarroel, A., Alvarez, O., Latorre, R. 1986. Blockade of a Caactivated K channel by quaternary ammonium ions.Biophys. J. 49:576a (abstr.)

    Google Scholar 

  • Weller, U., Bernhardt, U., Siemen, D., Dreyer, F., Vogel, W., Habermann, E. 1985. Electrophysiological and neurobiochemical evidence for the blockade of a potassium channel by dendrotoxin.Naunyn-Schmeideberg's Arch. Pharmacol. 330:77–83

    Google Scholar 

  • Weston, A.H., Abbott, A. 1987. New class of antihypertensive acts by opening K+ channels.Trends Pharmacol. Sci. 8: 283–284

    Google Scholar 

  • Williamson, R.E., Ashley, C.C. 1982. Free Ca2+ and cytoplasmic streaming in the algaChara.Nature (London) 296:647–651

    Google Scholar 

  • Yellen, G. 1987. Permeation in potassium channels: Implications for channel structure.Annu. Rev. Biophys. Biophys. Chem. 16:227–246

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tester, M. Pharmacology of K+ channels in the plasmalemma of the green algaChara corallina . J. Membrain Biol. 103, 159–169 (1988). https://doi.org/10.1007/BF01870946

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870946

Key Words

Navigation