Skip to main content
Log in

Junctional membrane permeability

Depression by substitution of Li for extracellular Na, and by long-term lack of Ca and Mg; restoration by cell repolarization

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Substitution of extracellular Na+ by Li+ causes depression of junctional membrane permeability inChironomus salivary gland cells; within 3 hr, permeability falls to so low a level that neither fluorescein nor the smaller inorganic ions any longer traverse the junctional membrane in detectable amounts (uncoupling). The effect is Li-specific: if choline+ is the Na+ substitute, coupling is unchanged. The Li-produced uncoupling is not reversed by restitution of Na+. Long-term exposure (>1 hr) of the cells to Ca, Mg-free medium leads also to uncoupling. This uncoupling is fully reversible by early restitution of Ca++ or Mg++. Coupling is maintained in the presence of either Ca++ or Mg++, so long as the total divalent concentration is about 12mm. The uncoupling in Ca, Mg-free medium ensues regardless of whether the main monovalent cation is Na, Li or choline.

The uncouplings are accompanied by cell depolarization. Repolarization of the cells by inward current causes restoration of coupling; the junctional conductance rises again to its normal level. The effect was shown for Li-produced uncoupling, for uncoupling by prolonged absence of external Ca++ and Mg++, and for uncoupling produced by dinitrophenol. In all cases, the recoupling has the same features: (1) it develops rapidly upon application of the polarizing current; (2) it is cumulative; (3) it is transient, but outlasts the current; and (4) it appears not to depend on the particular ions carrying the current from the electrodes to the cell. The recoupling is due to repolarization of nonjunctional cell membrane; recoupling can be produced at zero net currernt through the junctional membrane. Recoupling takes place also as a result of chemically produced repolarization; restoration of theK gradients in uncoupled cells causes partial recoupling during the repolarization phase.

An explanation of the results on coupling is proposed in terms of known mechanisms of regulation of Ca++ flux in cells. The uncouplings are explained by actions raising the Ca++ level in the cytoplasmic environment of the junctional membranes; the recoupling is explained by actions lowering this Ca++ level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W. J., Moore, J. W. 1961. Action of external divalent ion reduction on sodium movement in the squid giant axon.J. Gen. Physiol. 45:93.

    Google Scholar 

  • Ashley, C. C., Ridgway, E. B. 1969. Aspects of the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres.J. Physiol. 200:74P.

    Google Scholar 

  • Baker, P. F. 1970. Sodium-calcium exchange across the nerve cell membrane.In: Calcium and Cellular Function. A. W. Cuthbert, editor. p. 96. St. Martin's Press, New York.

    Google Scholar 

  • —, Blaustein, M. P. 1968. Sodium dependent uptake of calcium by crab nerve.Biochim. Biophys. Acta 150:167.

    Google Scholar 

  • Baker, P. F., Blaustein, M. P., Hodgkin, A. L., Steinhardt, R. A. 1967. The effect of sodium concentration on calcium movements in giant axons ofLoligo forbesi. J. Physiol. 192:43P.

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Ridgway, E. B. 1970. Two phases of calcium entry during the action potential in giant axons ofLoligo. J. Physiol. 208:80P.

    Google Scholar 

  • Bolingbroke, V., Maizels, M. 1959. Calcium ions and the premeability of erythrocytes.J. Physiol. 149:563.

    Google Scholar 

  • van Breemen, C., van Breemen, D. 1968. Stimulation of calcium efflux from smooth muscle by extracellular calcium.Biochim. Biophys. Acta 163:114.

    Google Scholar 

  • —, Daniel, E. E. 1966. The influence of high potassium depolarization and acetylcholine on calcium exchange in the rat uterus.J. Gen. Physiol. 49:1299.

    Google Scholar 

  • —— van Breemen, D. 1966. Calcium distribution and exchange in the rat uterus.J. Gen. Physiol. 49:1265.

    Google Scholar 

  • Bulbring, E., Tomita, T. 1970. Calcium and the action potential in smooth muscle.In: Calcium and Cellular Function. A. W. Cuthbert, editor. St. Martin's Press, New York.

    Google Scholar 

  • Carafoli, E., Patriarca, P., Rossi, C. S. 1969. A comparative study of the role of mitochondria and the sarcoplasmic reticulum in the uptake and release of Ca by the rat diaphragm.J. Cell. Physiol. 74:17.

    Google Scholar 

  • Carmeliet, E. E. 1964. Influence of lithium ions on the trans-membrane potential and cation content of cardiac cells.J. Gen. Physiol. 47:503.

    Google Scholar 

  • Carvalho, A., Sanui, H., Pace, N. 1963. Calcium and magnesium binding properties of cell membrane materials.J. Cell. Comp. Physiol. 62:311.

    Google Scholar 

  • Chaberek, S., Martell, A. E. 1959. Organic Sequestering Agents. John Wiley & Sons, New York.

    Google Scholar 

  • Cosmos, E., Harris, E. J. 1961. In vitro studies of the gain and exchange of calcium in frog skeletal muscle.J. Gen. Physiol. 44:1121.

    Google Scholar 

  • Drahota, Z., Carafoli, E., Rossi, C. S., Gamble, R. C., Lehninger, A. L. 1965. The steady state maintenance of accumulated calcium in rat liver mitochondria.J. Biol. Chem. 240:2712.

    Google Scholar 

  • Dransfeld, H., Greef, K., Schorn, A., Ting, B. T. 1969. Calcium uptake in mitochondria and vesicles of heart and skeletal muscle.Biochem. Pharmacol. 18:1335.

    Google Scholar 

  • Frankenhäuser, B., Hodgkin, A. L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. 137:218.

    Google Scholar 

  • Gear, A. R., Lehninger, A. L. 1968. Rapid, respiration-dependent binding of alkali metal cations by rat liver mitochondria.J. Biol. Chem. 243:3953.

    Google Scholar 

  • Goodford, P. J. 1967. The calcium content of smooth muscle of the guinea pig taenia coli.J. Physiol. 192:145.

    Google Scholar 

  • Hagiwara, S., Takahashi, K. 1967. Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane.J. Gen. Physiol. 50:583.

    Google Scholar 

  • Hodgkin, A. L., Keynes, R. D. 1955. Active transport of cations in the giant axons from sepia and loligo.J. Physiol. 128:28.

    Google Scholar 

  • Judah, J. D., Ahmed, K. D. 1964. The biochemistry of sodium transport.Biol. Rev. 39:160.

    Google Scholar 

  • Kanno, Y., Loewenstein, W. R. 1966. Cell-to-cell passage of large molecules.Nature 212:629.

    Google Scholar 

  • Keynes, R. D., Swan, R. C. 1959. The permeability of frog muscle fibre to lithium ions.J. Physiol. 147:628.

    Google Scholar 

  • Lindahl, P. E. 1940. Neuere Beiträge zur physiologischen Grundlage der Vegetativisierung des Seeigelkeimes durch Lithiumionen.Arch. Entw. Mech. Org. 140:168.

    Google Scholar 

  • Loewenstein, W. R. 1966. Permeability of membrane junctions.Ann. N.Y. Acad. Sci. 137:441.

    Google Scholar 

  • — 1967a. Cell surface membranes in close contact. Role of calcium and magnesium ions.J. Colloid Interface Sci. 25:34.

    Google Scholar 

  • — 1967b. On the genesis of cellular communication.Develop. Biol. 15:503.

    Google Scholar 

  • —, Nakas, M., Socolar, S. J. 1967. Junctional membrane uncoupling: Permeability transformations at a cell membrane junction.J. Gen. Physiol. 50:1865.

    Google Scholar 

  • Luxuro, M., Yañez, E. 1968. Permeability of the giant axon ofDosidicus gigas to calcium ions.J. Gen. Physiol. 51:1155.

    Google Scholar 

  • Morrill, G. A., Kaback, H. R., Robbins, E. 1964. Effects of calcium in intracellular sodium and potassium concentrations in plant and animal cells.Nature 204:641.

    Google Scholar 

  • Narahashi, T. 1964. Restoration of action potential by anodal polarization in lobster giant axons.J. Cell. Comp. Physiol. 64:73.

    Google Scholar 

  • Niedergerke, R. 1963. Calcium movements in frog heart ventricles at rest and during contractions.J. Physiol. 167:515.

    Google Scholar 

  • —, Orkand, R. W. 1966. The dual effect of calcium on the action potential of the frog's heart.J. Physiol. 184:291.

    Google Scholar 

  • Obara, S., Grundfest, H. 1968. Effects of lithium on different membrane components of crayfish stretch receptor neurons.J. Gen. Physiol. 51:635.

    Google Scholar 

  • Oliveira-Castro, G. M., Loewenstein, W. R. 1971. Junctional membrane permeability: Effects of divalent cations.J. Membrane Biol. 5:51.

    Google Scholar 

  • Payton, B. W., Bennett, M. V. L., Pappas, G. D. 1969. Permeability and structure of junctional membranes at an electrotonic synapse.Science 166:1641.

    Google Scholar 

  • Politoff, A. L., Socolar, S. J., Loewenstein, W. R. 1969. Permeability of a cell membrane junction. Dependence on energy metabolism.J. Gen. Physiol. 53:498.

    Google Scholar 

  • Portzehl, H., Caldwell, P. C., Ruegg, J. C. 1964. The dependence of contraction and relaxation of muscle fibres from the crabMaia squinado on the internal concentration of free calcium ions.Biochim. Biophys. Acta 79:581.

    Google Scholar 

  • Reuben, J. P., Brandt, P. W., Girardier, L., Grundfest, H. 1967. Crayfish muscle: Permeability to sodium induced by calcium depletion.Science 155:1263.

    Google Scholar 

  • Reuter, H., Seitz, N. 1968. The dependence of Ca efflux from cardiac muscle on temperature and external ion composition.J. Physiol. 195:451.

    Google Scholar 

  • Rose, B. 1970. Junctional membrane permeability: Restoration by repolarizing current.Science 169:607.

    Google Scholar 

  • — 1971. Intercellular communication and some structural aspects of membrane junctions in a simple cell system.J. Membrane Biol. 5:1.

    Google Scholar 

  • — Loewenstein, W. R. 1969. Depression of junctional membrane permeability by substitution of lithium for extracellular sodium.Biochim. Biophys. Acta 173:146.

    Google Scholar 

  • Rummel, W., Seifen, E., Baldauf, J. 1962. Aufnahme und Abgabe von Calcium an Erythrocyten von Menschen.Arch. Exp. Pathol. Pharmakol. 244:172.

    Google Scholar 

  • Schatzmann, H. J. 1966. ATP-dependent Ca-extrusion from human red cells.Experientia 22:364.

    Google Scholar 

  • Schou, M. 1957. Biology and pharmacology of the lithium ion.Pharmacol. Rev. 9:17.

    Google Scholar 

  • Schwarzenbach, G. 1955. Die komplexometrische Titration. Ferd. Enke Verlag, Stutgart.

    Google Scholar 

  • Socolar, S. J., Politoff, A. L. 1971a. Uncoupling a cell junction in a glandular epithelium by depolarizing current.Science 172:492.

    Google Scholar 

  • Socolar, S. J., Politoff, A. L. 1971b. Depression of conductance of a cell membrane junction by depolarization.XXV Intern'l Congress of Physiol. Sci Munich, July 1971.

  • Staley, N., Benson, E. S. 1968. The ultrastructure of frog ventricular cardiac muscle and its relationship to mechanisms of excitation-contraction coupling.J. Cell Biol. 38:99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, B., Loewenstein, W.R. Junctional membrane permeability. J. Membrain Biol. 5, 20–50 (1971). https://doi.org/10.1007/BF01870824

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870824

Keywords

Navigation