Skip to main content
Log in

The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Urinary bladders ofBufo marinus were depolarized, by raising the serosal K concentration, to facilitate voltage-clamping of the apical membrane. Passive Na transport across the apical membrane was then studied with near-instantaneous current-voltage curves obtained before and after eliciting a natriferic response with oxytocin. Fitting with the constant-field equation showed that the natriferic effect is accounted for by an increase in the apical Na permeability. It is accompanied by a small increase in cellular Na activity. Furthermore, fluctuation analysis of the amiloride-induced shot-noise component of the short-circuit current indicated that the permeability increase is not due to increased Na translocation through those Na channels which were already conducting prior to hormonal stimulation. Rather, the natriferic effects is found to be based on an increase in the population of transporting channels. It appears that, in response to the hormone, Na channels are rapidly “recruited” from a pool of electrically silent channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, J., Cuthbert, A.W., Edwardson, J.M. 1979. Estimation of the density of sodium entry sites in frog skin epithelium from the uptake of [3H]-benzamil.J. Physiol. (London) 295:477–490

    Google Scholar 

  • Andersen, B., Ussing, H.H. 1957. Solvent drag on nonelectrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone.Acta Physiol. Scand. 39:228–239

    PubMed  Google Scholar 

  • Andreoli, T.E., Schafer, J.A. 1976. Mass transport across cell membranes: The effects of antidiuretic hormone on water and solute flows in epithelia.Annu. Rev. Physiol. 38:451–500

    PubMed  Google Scholar 

  • Begenisich, T., Stevens, C.F. 1975. How many conductance states do potassium channels have?Biophys. J. 15:843–846

    PubMed  Google Scholar 

  • Biber, T.U.L., Cruz, L.J. 1973. Effect of antidiuretic hormone on sodium uptake across outer surface of frog skin.Am. J. Physiol. 225:912–917

    Google Scholar 

  • Cereijido, M., Herrera, F.C., Flanigan, W.J., Curran, P.F. 1964. The influence of Na-concentration on Na-transport across frog skin.J. Gen. Physiol. 47:879–893

    PubMed  Google Scholar 

  • Curran, P.F., Herrera, F.C., Flanigan, W.J. 1963. The effect of Ca and antidiuretic hormone on Na-transport across frog skin. II. Sites and mechanisms of action.J. Gen. Physiol. 46:1011–1027

    Google Scholar 

  • Cuthbert, A.W. 1976. Amiloride as a probe for sodium entry sites in frog skin epithelium.J. Physiol. (London) 266:28P

    Google Scholar 

  • Cuthbert, A.W., Painter, E. 1969. Capacitance changes in frog skin caused by theophylline and antidiuretic hormone.Brit. J. Pharmacol. 37:314–324

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1974. Amiloride and the sodium channel.Naunyn Schmiederbergs Arch. Pharmacol. 281:261–269

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1975. Effects of vasopressin and aldosterone on amiloride binding in toad bladder epithelial cells.Proc. R. Soc. London B 189:543–575

    Google Scholar 

  • DiBona, D.R. 1978. Direct visualization of epithelial morphology in the living amphibian urinary bladder.J. Membrane Biol. Special Issue:45–70

    Google Scholar 

  • Eigler, J., Kelter, J., Renner, E. 1967. Wirkungscharakteristika eines neuen Acylquanidins-Amilorid-HCl (MK 870) an der isolierten Haut von Amphibien.Klin. Wochenschr. 45:737–738

    PubMed  Google Scholar 

  • Ekblad, E.B.M., Strum, J.M., Edelman, I.S. 1976. Differential covalent labeling of apical and basal-lateral membranes of the epithelium of the toad bladder.J. Membrane Biol. 26:301–317

    Google Scholar 

  • Frazier, H.S., Dempsey, E.F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529–543

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Furhmann, F.A., Ussing, H.H. 1951. A characteristic response of the isolated frog skin potential to neurohypophyseal principles and its relation to the transport of sodium and water.J. Cell. Comp. Physiol. 38:109–130

    Google Scholar 

  • Gronowicz, G., Masur, S.K., Holtzman, E. 1980. Quantitative analysis of exocytosis and endocytosis in the hydroosmotic response of toad bladder.J. Membrane Biol. 52:221–235

    Google Scholar 

  • Jörgensen, C.B., Levi, H., Ussing, H.H. 1946. On the influence of neurohypophyseal principles on the sodium metabolism in the axolotl (Amblystoma mexicanuum).Acta Physiol. Scand. 12:350–371

    Google Scholar 

  • Kachadorian, W.A., Levine, S.D., Wade, J.B., DiScala, V.A., Hays, R.M. 1977. Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder.J. Clin. Invest. 59:576–581

    PubMed  Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1979. Effect of ADH on Na-channel parameters in toad urinary bladder.Pfluegers Arch. 382:R13

    Google Scholar 

  • Lindemann, B., DeFelice, L.J. 1981. On the use of general network functions in the evaluation of noise spectra obtained from epithelia.In: Ion Transport by Epithelia: Recent Advances. S.G. Schultz, editor. Raven Press, New York (in press)

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    PubMed  Google Scholar 

  • Lindemann, B., Van Driessche, W. 1978. The mechanism of Na-uptake through Na-selective channels in the epithelium of frog skin.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, p. 155. Raven Press, New York

    Google Scholar 

  • Macknight, A.D.C., DiBona, D.R., Leaf, A. 1980. Sodium transport across toad urinary bladder: A model “tight” epithelium.Physiol. Rev. 60:615–715

    Google Scholar 

  • Mandel, L.J. 1978. Effects of pH, Ca, ADH, and theophylline on kinetics of Na-entry in frog skin.Am. J. Physiol. 235:C35-C48

    Google Scholar 

  • Muller, J., Kachadorian, W.A., DiScala, V.A. 1980. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells.J. Cell Biol. 85:83–95

    PubMed  Google Scholar 

  • Orloff, J., Handler, J. 1962. The similarity of effects of vasopressin, adenosine-3′,5′-phosphate (cyclic AMP) and theophylline on the toad bladder.J. Clin. Invest. 41:702–709

    PubMed  Google Scholar 

  • Orloff, J., Handler, J. 1967. The role of adenosine 3′,5′-phosphate in the action of antidiuretic hormone.Am. J. Med. 42:757–768

    PubMed  Google Scholar 

  • Palmer, L.G., Edelman, I.S. 1981. Control of apical Na permeability in the toad urinary bladder by aldosterone.Ann. N.Y. Acad. Sci. (in press)

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium-transport in toad urinary bladders: Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Palmer, L.G., Li, J.H.-Y., Lindemann, G., Edelman, I.S. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  • Roloff, C., Dörge, A., Rick, R., Thurau, K. 1978. Effect of vasopressin on intracellular electrolyte composition of the frog skin.Pfluegers Arch. 377:R40

    Google Scholar 

  • Stetson, D.L., Lewis, S.A., Wade, J.B. 1981. ADH-induced increase in transepithelial capacitance in toad bladder.Biophys. J. 33:43a

    Google Scholar 

  • Van Driessche, W., Hegel, U. 1978. Amiloride induced fluctuations of short circuit current through toad urinary bladder. 6th International Biophysics Congress. Kyoto, Japan. p. 215

  • Van Driessche, W., Lindemann, B. 1978. Low noise amplification of voltage and current fluctuations arising in epithelia.Rev. Sci. Instrum. 49:52–55

    Google Scholar 

  • Van Driessche, W., Lindemann, B. 1979. Concentration dependence of currents through single sodium-selective pores in frog skin.Nature (London) 282:519–520

    Google Scholar 

  • Wade, J.B. 1978. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. III. Location, structure and vasopressin dependence of intramembrane particle arrays.J. Membrane Biol. Special Issue: 281–296

  • Warnche, J., Lindemann, B. 1979. A sinewave-burst method to obtain impedance spectra of transporting epithelia during voltage clamp.Pfluegers Arch. 382:R12

    Google Scholar 

  • Warncke, J., Lindemann, B. 1980. Effect of ADH on the capacitance of apical epithelial membranes.Proc. 28th Int. Congr. Physiol. Sci. (Budapest) pp. 129–133.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.H.Y., Palmer, L.G., Edelman, I.S. et al. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone. J. Membrain Biol. 64, 77–89 (1982). https://doi.org/10.1007/BF01870770

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870770

Key words

Navigation