Skip to main content
Log in

Charge translocation by the Na,K-pump: II. Ion binding and release at the extracellular face

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In the first part of the paper, evidence has been presented that electrochromic styryl dyes, such as RH 421, incorporate into Na, K-ATPase membranes isolated from mammalian kidney and respond to changes of local electric field strength. In this second part of the paper, fluorescence studies with RH-421-labeled membranes are described, which were carried out to obtain information on the nature of charge-translocating reaction steps in the pumping cycle. Experiments with normal and chymotrypsin-modified membranes show that phosphorylation by ATP and occlusion of Na+ are electroneutral steps, and that release of Na+ from the occluded state to the extracellular side is associated with translocation of charge. Fluorescence signals observed in the presence of K+ indicate that binding and occlusion of K+ at the extracellular face of the pump is another major electrogenic reaction step. The finding that the fluorescence signals are insensitive to changes of ionic strength leads to the conclusion that the binding pocket accommodating Na+ or K+ is buried in the membrane dielectric. This corresponds to the notion that the binding sites are connected with the extracellular medium by a narrow access channel (“ion well”). This notion is further supported by experiments with lipophilic ions, such as tetraphenylphosphonium (TPP+) or tetraphenylborate (TPB), which are known to bind to lipid bilayers and to change the electrostatic potential inside the membrane. Addition of TPP+ leads to a decrease of binding affinity for Na+ and K+, which is thought to result from the TPP-induced change of electric field strength in the access channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O.S., Feldberg, S., Nakadomari, H., Levy, S. McLaughlin, S. 1978. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.Biophys. J. 21:35–70

    Google Scholar 

  • Apell, H.-J. 1989. Electrogenic properties of the Na,K pump.J. Membrane Biol. 110:103–114

    Google Scholar 

  • Apell, H.-J., Borlinghaus, R., Läuger, P. 1987. Fast charge translocations associated with partial reactions of the Na,K pump: II. Microscopic analysis of transient currents.J. Membrane Biol. 97:179–191

    Google Scholar 

  • Apell, H.-J., Häring, V., Roudna, M. 1990. Na, K-ATPase in artificial lipid vesicles: Comparison of Na,K and Na-only pumping mode.Biochim. Biophys. Acta 1023:81–90

    Google Scholar 

  • Bahinski, A., Nakao, M., Gadsby, D.C. 1988. Potassium translocation by the Na/K pump is voltage insensitive.Proc. Natl. Acad. Sci. USA 85:3412–3416

    Google Scholar 

  • Beaugé, L., Berberian, G., Campos, M., Pedemonte, C. 1985. Substrate role of acetyl phosphate on Na,K-ATPase.In: The Sodium Pump. I. Glynn and C. Ellory, editors, pp. 321–333. Company of Biologists, Cambridge

    Google Scholar 

  • Borlinghaus, R., Apell, H.-J., Läuger, P. 1987. Fast charge translocations associated with partial reactions of the Na,K-pump: I. Current and voltage transients after photochemical release of ATP.J. Membrane Biol. 97:161–178

    Google Scholar 

  • Bühler, R., Stürmer, W., Apell, H.-J., Läuger, P. 1991. Charge translocation by the Na,K-pump: I. Kineticts of local field changes studies by time-resolved fluorescence measurement.J. Membrane Biol. 121:141–161

    Google Scholar 

  • Cornelius, F. 1989. Uncoupled Na+-efflux on reconstituted shark Na,K-ATPase is electrogenic.Biochem. Biophys. Res. Commun. 160:801–807

    Google Scholar 

  • Deguchi, N., Jørgensen, P.L., Maunsbach, A.B. 1977. Ultrastructure of the sodium pump. Comparison of thin sectioning, negative staining, and freeze-fracture of purified, membranebound (Na+, K+)-ATPase.J. Cell Biol. 75:619–634

    Google Scholar 

  • De Weer, P., Gadsby, D.C., Rakowski, R.F. 1988. Voltage dependence of the Na−K pump.Annu. Rev. Physiol. 50:225–241

    Google Scholar 

  • Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985. Pump currents generated by the purified Na+, K+-ATPase from kidney on black lipid membranes.EMBO J. 4:3079–3085

    Google Scholar 

  • Forbush, B., III. 1987. Rapid release of42K and86Rb from two distinct transport sites on the Na,K-pump in the presence of Pi or vanadate.J. Biol. Chem. 262:11116–11127

    Google Scholar 

  • Forbush, B., III 1988. Occluded ions and Na,K-ATPase.In: Na+, K+-Pump. Part A: Molecular Aspects. J.C. Skou, J.G. Nørby, A.B. Maunsbach, and M. Esmann, editors. pp. 229–248. A.R. Liss, New York

    Google Scholar 

  • Glynn, I.M. 1985. The Na+, K+-transporting adenosine triphosphatase.In: The Enzymes of Biological Membranes. (2nd ed.) Vol. 3, pp. 35–114. A.N. Martonosi, editor. Plenum, New York

    Google Scholar 

  • Glynn, I.M., Hara, Y., Richards, D.E. 1984. The occlusion of sodium ions within the manmalian sodium-potassium pump: Its role in sodium transport.J. Physiol. 351:531–547

    Google Scholar 

  • Goldshleger, R., Shahak, Y., Karlish, S.J.D. 1990. Electrogenic and electroneutral transport modes of renal Na/K ATPase reconstituted into proteoliposomes.J. Membrane Biol. 113:139–154

    Google Scholar 

  • Goldshlegger, R., Karlish, S.J.D., Rephaeli, A., Stein, W.D. 1987. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.J. Physiol. 387:331–355

    Google Scholar 

  • Jørgensen, P.L., 1974. Isolation of the (Na+K+)-ATPase.Methods Enzymol. 32:277–290

    Google Scholar 

  • Jørgensen, P.L., Andersen, J.P. 1988. Structural basis for E1–E2 conformational transitions in Na,K-pump and Ca-pump proteins.J. Membrane Biol. 103:95–120

    Google Scholar 

  • Jørgensen, P.L., Collins, J.H. 1986. Tryptic and chymotryptic cleavage sites in the sequence of α-subunit of (Na++K+)-ATPase from outer medulla of mammalian kidney.Biochim. Biophys. Acta 860:570–576

    Google Scholar 

  • Jørgensen, P.L., Petersen, J. 1985. Chymotryptic cleavage of α-subunit in E1-forms of renal (Na++K+)-ATPase: Effects on enzymatic properties, ligand binding and cation exchange.Biochim. Biophys. Acta 821:319–333

    Google Scholar 

  • Kapakos, J.G., Steinberg, M. 1986. Ligand binding to (Na,K)-ATPase labeled with 5-iodoacetamidofluorescein.J. Biol. Chem. 261:2084–2089

    Google Scholar 

  • Kaplan, J.H., Forbush, B., III, Hoffman, J.F. 1978. Rapid photolytic release of adenosine-5′-triphosphate from a protected analogue: Utilization by the Na:K pump of human red blood cell ghosts.Biochemistry 17:1929–1935

    Google Scholar 

  • Klodos, I., Forbush, B., III. 1988. Rapid conformational changes of the Na/K pump revealed by a fluorescent dye. RH-160.J. Gen. Physiol. 92:46a (abstr.)

    Google Scholar 

  • Läuger, P., Apell, H.-J., 1986. A microscopic model for the current-voltage behavior of the Na,K-pump.Eur. Biophys. J. 13:305–321

    Google Scholar 

  • Läuger, P., Apell, H.-J. 1988. Transient behaviour of the Na,K-pump: Microscopic analysis of nonstationary ion-translocation.Biochim. Biophys. Acta 944:451–464

    Google Scholar 

  • Mitchell, P., Moyle, J. 1974. The mechanism of proton translocation in reversible proton-translocating adenosine triphosphatases.Biochem. Soc. (Spec. Publ.)4:91–111

    Google Scholar 

  • Nakao, M., Gadsby, D.C. 1986. Voltage dependence of Na translocation by the Na/K pump.Nature 323:628–630

    Google Scholar 

  • Nakao, M., Gadsby, D.C. 1989. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular muocytes.J. Gen. Physiol. 94:539–565

    Google Scholar 

  • Nørby, J.G. 1987. Na,K-ATPase: Structure and kinetics. Comparison with other ion transport systems.Chem. Scripta 27B:119–129

    Google Scholar 

  • Nørby, J.G., Klodos, I. 1988. The phosphointermediates of Na,K-ATPase.In: The Na,K+-Pump. Part A: Molecular Aspects. J.C. Skou, J.G. Nørby, A.B. Maunsbach, and M. Esmann, editors, pp. 249–270. A. R. Liss, New York

    Google Scholar 

  • Rakowski, R.F., Paxson, C.L. 1988. Voltage dependence of Na/K pump current inXenopus oocytes.J. Membrane Biol. 106:173–182

    Google Scholar 

  • Rakowski, R.F., Vasilets, L.A., LaTona, J., Schwarz, W. 1991 A negative slope in the current-voltage relationship of the Na+/K+ pump inXenopus oocytes produced by reduction of external [K+].J. Membrane Biol. 121:177–187

    Google Scholar 

  • Rakowski, R.F., Vasilets, L.A., Schwarz, W. 1990. Conditions for a negative slope in the current-voltage relationship of the Na/K pump inXenopus oocytes.Biophys. J. 57:182a

    Google Scholar 

  • Rephaeli, A., Richards, D., Karlish, S.J.D. 1986. Electrical potential accelerates the E1P(Na)-E2P conformational transition of (Na,K)ATPase is reconstituted vesicles.J. Biol Chem. 261:12,437–12,440

    Google Scholar 

  • Robinson, J.D., Flashner, M.S. 1979. The (Na++K+)-activated ATPase. Enzymatic and transport properties.Biochim. Biophys. Acta 549:145–176

    Google Scholar 

  • Stürmer, W., Apell, H.-J., Wuddel, I., Läuger, P. 1989. Conformational transitions and charge translocation by the Na,K pump: Comparison of optical and electrical transients elicited by ATP-concentration jumps.J. Membrane Biol. 110:67–86

    Google Scholar 

  • Tanford, C. 1983. Mechanism of free energy coupling in active transport.Annu. Rev. Biochem. 52:379–409

    Google Scholar 

  • Yoda, A., Yoda, S. 1987. Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+.J. Biol. Chem. 262:110–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased (September 13, 1990).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stürmer, W., Bühler, R., Apell, H.J. et al. Charge translocation by the Na,K-pump: II. Ion binding and release at the extracellular face. J. Membrain Biol. 121, 163–176 (1991). https://doi.org/10.1007/BF01870530

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870530

Key Words

Navigation