Skip to main content
Log in

Potassium transport and intracellular potassium activities in rabbit gallbladder

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Intracellular K activities, (K) c , in rabbit gallbladder were determined using conventional and ion-selective microelectrodes. (K) c averaged 73mm and was 1.5 times that predicted for an equilibrium distribution of the ion across both apical and basolateral membranes. Thus, K must be actively transported into the cell, and the responsible mechanism is almost certainly the Na−K exchange pump in the basolateral membrane.

Measurements of the bidirectional transepithelial fluxes of42K indicate that K is secreted into the mucosal solution at a rate of 0.8 μeq/cm2 hr; this value is only 6% of the rate of transcellular Na absorption by this epithelium.

Calculation of the conductance of the basolateral membrane,G s, reveals that it is too low to account for the maintenance of the steady-state (K) c by a 3 Na∶2 K pump mechanism at the basolateral membrane if K exit across that barrier is entirely electrodiffusional.

Our results together with those of others strongly suggest that a significant fraction of “downhill” K exit from the cell across the basolateral membrane is nonconductive and coupled to the movement of some other ion, perhaps Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blom, H., Helander, H.F. 1977. Quantitative electron microscopical studies onin vitro incubated rabbit gallbladder epithelium.J. Membrane Biol. 37:45–61

    Google Scholar 

  • Gala, P.M. 1981. Volume regulation byAmphiuma red celles The membrane potential and its implications regarding the nature of the ion-flux pathways.J. Gen. Physiol. 76:683–708

    Google Scholar 

  • Cremaschi, D., Hénin, S. 1975. Na+ and Cl transepithelial routes in rabbit gallbladder. Tracer analysis of the transports.Pfluegers Arch. 361:33–41

    Google Scholar 

  • Cremaschi, D., Hénin, S., Ferroni, A. 1974. Intracellular electric potential in the epithelial cells of rabbit gallbladder.Bioelectrochem. Bioenerg. 1:208–216

    Google Scholar 

  • DeLong, J., Civan, M.M. 1980. Intracellular chemical activity of potassium in toad urinary bladder.In: Current Topics in Membranes and Transport. F. Broner and A. Kleinzeller, editors. Vol. 13, pp. 93–105. Academic Press, New York

    Google Scholar 

  • Diamond, J.M. 1964. Transport of salt and water in rabbit and guinea pig gallbladder.J. Gen Physiol. 48:1–14

    Google Scholar 

  • Diestchy, J.M. 1964. Water and solute movement across the wall of the everted rabbit gallbladder.Gastroenterology 47:395–408

    Google Scholar 

  • Diestchy, J.M., Moore, E.W. 1964. Diffusion potentials and potassium distributions across the gallbladder wall.J. Clin. Invest. 43:1551–1560

    Google Scholar 

  • Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport.J. Membrane Biol. 42:229–245

    Google Scholar 

  • Frederiksen, O., Leyssac, P.P. 1969. Transcellular transport of isosmotic volumes by the rabbit gallbladderin vitro.J. Physiol. (London) 201:210–224

    Google Scholar 

  • Frizzell, R.A., Dugas, M.C., Schultz, S.G. 1975. Sodium chloride transport by rabbit gallbladder.J. Gen. Physiol. 65:769–795

    Google Scholar 

  • Fromm, M., Schultz, S.G. 1981. Some properties of KCl-filled microelectrodes: Correlation of potassium “leakage” with tip resistance.J. Membrane Biol. 62:239–244

    Google Scholar 

  • Fujimoto, M., Kazuyo, N., Kubota, T. 1980. Electrochemical profile for ion transport across the membrane of proximal tubule cells.Membrane Biochem. 3:67–97

    Google Scholar 

  • Fujimoto, M., Kubota, T. 1976. Physiochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631–650

    Google Scholar 

  • Glynn, J.M., Karlish, S.J.D. 1975. The sodium pump.Annu. Rev. Physiol. 37:13–53

    Google Scholar 

  • Graf, J., Giebisch, G. 1979. Intracellular sodium activity and sodium transport inNecturus gallbladder epithelium.J. Membrane Biol. 47:327–355

    Google Scholar 

  • Gunter-Smith, P.J., Duffey, M.E., Schultz, S.G. 1980. Intracellular potassium activities in rabbit gallbladder.Fed. Proc. 39:1080

    Google Scholar 

  • Hénin, S., Cremaschi, D. 1975. Transcellular ion route in rabbit gallbladder. Electrical properties of the epithelial cells.Pfluegers Arch. 355:125–139

    Google Scholar 

  • Hénin, S., Cremashi, D., Meyer, G., Brivio, G. 1976. Cellular ion route in rabbit gallbladder epithelium.Bioelectrochem. Bioenerg. 3:92–98

    Google Scholar 

  • Hénin, S., Cremashi, D., Schettino, T., Meyer, G., Donin, C.L.L., Cotelli, F. 1977. Electrical parameters in gallbladders of different species. Their contribution to the origin of the transmural potential difference.J. Membrane Biol. 34:73–91

    Google Scholar 

  • Kaye, G.I., Wheeler, H.O., Whitlock, R.T., Lane, N. 1966. Fluid transport in the rabbit gallbladder.J. Cell Biol. 30:237–268

    Google Scholar 

  • Kimura, G., Spring, K.R. 1979. Luminal Na+ entry intoNecturus proximal tubule cells.Am. J. Physiol. 236:F295-F301

    Google Scholar 

  • Lee, C.O., Armstrong, W. McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261–1264

    Google Scholar 

  • Leidtke, C.M., Hopfer, U. 1977. Anion transport in brush border membranes isolated from rat small intestine.Biochem. Biophys. Res. Commun. 76:579

    Google Scholar 

  • Lev, A.A., Armstrong, W. McD. 1975. Ionic activities in cells.In: Current Topics in Membranes and Transport. A. Kleinzeller and F. Broner, editors. Vol 6, pp. 59–123. Academic Press, New York

    Google Scholar 

  • Lewis, S. 1981. Interactions between apical and basolateral membrane during Na transport across tight epithelia.In: Ion Transport by Epithelial Tissues. S.G. Schultz, editor. Raven Press, New York

    Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148

    Google Scholar 

  • Machen, T.E., Diamond, J.M. 1969. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gallbladder during maximal fluid transport.J. Membrane Biol. 1:194–213

    Google Scholar 

  • Martin, D.W. 1974. The effect of the bicarbonate ion on the gallbladder salt pump.J. Membrane Biol. 18:219–230

    Google Scholar 

  • Martin, D.W., Diamond, J.M. 1966. Energetics of coupled active transport of sodium and chloride.J. Gen. Physiol. 50:295–315

    Google Scholar 

  • Mürer, H., Hopfer, U., Kinne, R. 1976. Sodium/proton antiport in brush-border membrane vesicles isolated from rat small intestine and kidney.Biochem. J. 154:597–604

    Google Scholar 

  • Neilsen, R. 1979. Coupled transepithelial sodium and potassium transport across isolated frog skin: Effect of ouabain, amiloride and the polyene antibiotic filipin.J. Membrane Biol. 51:161–184

    Google Scholar 

  • Os, C.H. van, Slegers, J.F.G. 1971. Correlations between (Na−K) activitated ATPase activities and the rate of isotonic fluid transport of gallbladder epithelium.Biochim. Biophys. Acta 241:89–96

    Google Scholar 

  • Os, C.H. van, Slegers, J.F.G. 1975. The electrical potential profile of gallbladder epithelium.J. Membrane Biol. 24:341–363

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1975. Intracellular distribution of freepotassium inChironomus salivary glands.Science 188:1321–1322

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1977. Distribution of Na+, K+, and Cl between nucleus and cytoplasm inChironomus salivary gland cells.J. Membrane Biol. 33:41–61

    Google Scholar 

  • Reuss, L. 1979. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: III. Ionic permeability of the basolateral cell membrane.J. Membrane Biol. 47:239–259

    Google Scholar 

  • Reuss, L. 1981. Electrophysiology ofNecturus gallbladder.In: Ion Transport by Epithelial Tissues. S.G. Schultz, editor. Raven Press, New York

    Google Scholar 

  • Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345–362

    Google Scholar 

  • Reuss, L., Weinman, S.A., Grady, T.P. 1980. Intracellular K+ activity and its relation to basolateral membrane ion transport inNecturus gallbladder epithelium.J. Gen. Physiol. 76:33–52

    Google Scholar 

  • Schultz, S.G., Zalusky, R. 1964. Ion transport in isolated rabbit iluem I. Short-circuit current and Na fluxes.J. Gen. Physiol. 47:567–584

    Google Scholar 

  • Shindo, T., Spring, K.R. 1981. Chloride movement across the basolateral membrane of proximal tubule cells.J. Membrane Biol. 58:35–42

    Google Scholar 

  • Turnberg, L.A., Bieberdorf, F.A., Morawski, S.G., Fordtran, J.S. 1970. Interrelationships of chloride, bicarbonate, sodium and hydrogen transport in the human ileum.J. Clin. Invest. 49:557–567

    Google Scholar 

  • Wheeler, H.O. 1963. Transport of electrolytes and water across the wall of rabbit gallbladder.Am. J. Physiol. 205:427–438

    Google Scholar 

  • Wills, N.K., Lewis, S.A., Eaton, D.C. 1979. Active and passive properties of rabbit descending colon: A microelectrode and nystatin study.J. Membrane Biol. 45:81–108

    Google Scholar 

  • Wright, E.M., Barry, P.H., Diamond, J.M. 1971. The mechanism of cation permeation in rabbit gallbladder: Conductances, the current-voltage relation, concentration dependence of anioncation discrimination and the calcium competition effect.J. Membrane Biol. 4:331–357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunter-Smith, P.J., Schultz, S.G. Potassium transport and intracellular potassium activities in rabbit gallbladder. J. Membrain Biol. 65, 41–47 (1982). https://doi.org/10.1007/BF01870467

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870467

Key words

Navigation