Skip to main content
Log in

Energy-dependence of phlorizin binding to isolated renal microvillus membranes

Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient and sugar transport

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In order to elucidate the mechanism by which the electrochemical Na+ gradient energizes glucose transport, the energy-dependence of high affinity phlorizin binding to isolated renal microvillus membrane vesicles was examined. Phlorizin is a competitive inhibitor of glucose transport but is not itself transported.

Extravesicular Na+ accelerated the rate of phlorizin binding and inhibited the rate of dissociation of bound glycoside. Maneuvers to enhance intravesicular electronegativity stimulated phlorizin uptake and those to enhance intravesicular electropositivity inhibited. However, alterations in electrical potential were without effect on the rate of release of bound phlorizin. Intravesicular Na+ inhibited the phlorizin uptake rate.

The results are consistent with a model of the glucose transporter in which (i) Na+ increases the binding affinity of the carrier, (ii) the free carrier is negatively charged, and (iii) the translocation of the carrier is inhibited by the binding of Na+ in the absence of sugar. The electrochemical Na+ gradient thus energizes both glucose transport and phlorizin binding through its effect on the affinity and appearance of, the free carrier at the membrane surface rather than through an effect on sugar translocation per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, P.S. 1977. Electrical dependence of phlorizin binding to isolated rabbit renal cortical brush border membrane vesicles.Proc. Tenth. Annu. Meet. Am. Soc. Nephrol. p. 96 A

  2. Aronson, P.S., Sacktor, B. 1974. Transport ofd-glucose by brush border membranes isolated from the renal cortex.Biochim. Biophys. Acta 356:231

    Google Scholar 

  3. Aronson, P.S., Sacktor, B. 1975. The Na+ gradient-dependent transport ofd-glucose in renal brush border membranes.J. Biol. Chem. 250:6032

    Google Scholar 

  4. Beck, J.C., Sacktor, B. 1975. Energetics of the Na+-dependent transport ofd-glucose in renal brush border membrane vesicles.J. Biol. Chem. 250:8674

    Google Scholar 

  5. Bode, F., Baumann, K., Diedrich, D.F. 1972. Inhibition of [3H] phlorizin binding to isolated kidney brush border membranes by phlorizin-like compounds.Biochim. Biophys. Acta 290:134

    Google Scholar 

  6. Booth, A.G., Kenny, A.J. 1974. A rapid method for the preparation of microvilli from rabbit kidney.Biochem. J. 142:575

    Google Scholar 

  7. Chesney, R., Sacktor, B., Kleinzeller, A. 1974. The binding of phlorizin to the isolated luminal membrane of the renal proximal tubule.Biochim. Biophys. Acta 332:263

    Google Scholar 

  8. Crane, R.K. 1977. The gradient hypothesis and other models of carrier-mediated active transport.Rev. Physiol. Biochem. Pharmacol. 78:99

    Google Scholar 

  9. Crane, R.K., Malathi, P., Preiser, H. 1976. Reconstitution of specific Na+-dependentd-glucose transport in liposomes by Triton X-100 extracted proteins from purified brush border membranes of hamster small intestine.Biochem. Biophys. Res. Commun. 71:1010

    Google Scholar 

  10. Crane, R.K., Malathi, P., Preiser, H. 1976. Reconstitution of specific Na+-dependentd-glucose transport in liposomes by Triton X-100-extracted proteins from purified brush border membranes of rabbit kidney cortex.FEBS Lett. 67:214

    Google Scholar 

  11. Diedrich, D.F. 1966. Competitive inhibition of intestinal glucose transport by phlorizin analogs.Arch. Biochem. Biophys. 117:248

    Google Scholar 

  12. Frasch, W., Frohnert, P.P., Bode, F., Baumann, K., Kinne, R. 1970. Competitive inhibition of phlorizin binding byd-glucose and the influence of sodium: A study on isolated brush border membrane of rat kidney.Pfluegers Arch. 320:265

    Google Scholar 

  13. George, S.G., Kenny, A.J. 1973. Studies on the enzymology of purified preparations of brush border from rabbit kidney.Biochem. J. 134:43

    Google Scholar 

  14. Glossmann, H., Neville, D.M., Jr. 1972. Phlorizin receptors in isolated kidney brush border membranes.J. Biol. Chem. 247:7779

    Google Scholar 

  15. Heidrich, H.G., Kinne, R., Kinne-Saffran, E., Hanning K. 1972. The polarity of the proximal tubule cell in rat kidney.J. Cell Biol. 54:232

    Google Scholar 

  16. Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membrane from rat small intestine.J. Biol. Chem. 248:25

    Google Scholar 

  17. Kaback, H.R. 1977. Molecular biology and energetics of membrane transport.J. Cell. Physiol. 89:575

    Google Scholar 

  18. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G. 1975. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal lateral-plasma membranes.J. Memnrane Biol. 21:375

    Google Scholar 

  19. Liedtke, C.M., Hopfer, U. 1977. Anion transport in brush border membranes isolated from rat small intestine.Biochem. Biophys. Res. Commun. 76:579

    Google Scholar 

  20. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265

    Google Scholar 

  21. Murer, H., Hopfer, U. 1974. Demonstration of electrogenic Na+-dependentd-glucose transport in intestinal brush border membranes.Proc. Nat. Acad. Sci. USA 71:484

    Google Scholar 

  22. Murer, H., Hopfer, U., Kinne, R. 1976. Sodium/proton antiport in brush border membrane vesicles isolated from rat small intestine and kidney.Biochem. J. 154:597

    Google Scholar 

  23. Rudnick, G., Schuldiner, S., Kaback, H.R. 1976. Equilibrium between two forms of the lac carrier protein in energized and nonenergized membrane vesicles fromEscherichia coli.Biochemistry 15:5126

    Google Scholar 

  24. Scatchard, G. 1949. The attractions of proteins for small molecules and ions.Ann. N.Y. Acad. Sci. 51:660

    Google Scholar 

  25. Schuldiner, S., Kerwar, G.K., Kaback, H.R. 1975. Energy-dependent binding of dansylgalactosides to the β-galactoside carrier protein.J. Biol. Chem. 250:1361

    Google Scholar 

  26. Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637

    Google Scholar 

  27. Silverman, M. 1974. Thein vivo localization of high-affinity phlorizin receptors to the brush border surface of the proximal tubule in dog kidney.Biochim. Biophys. Acta 339:92

    Google Scholar 

  28. Silvermann, M., Black, J. 1975. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.Biochim. Biophys. Acta 394:10

    Google Scholar 

  29. Singer, S.J. 1974. The molecular organization of membranes.Annu. Rev. Biochem. 43:805

    Google Scholar 

  30. Stirling, C.E. 1967. High-resolution radioautography of phlorizin-3H in rings of hamster intestine.J. Cell Biol. 35:605

    Google Scholar 

  31. Tannenbaum, C., Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G. 1977. High-affinity phlorizin binding to brush border membranes from small intestine: Identity with (a part of) the glucose transport system, dependence on the Na+-gradient, partial purification.J. Supramol. Struct. 6:519

    Google Scholar 

  32. Thomas, L. 1973. Isolation of N-ethylmaleimide-labelled phlorizin-sensitived-glucose binding protein of brush border membrane from rat kidney cortex.Biochim. Biophys. Acta 291:454

    Google Scholar 

  33. Vick, H., Diedrich, D.F., Baumann, K. 1973. Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs.Am. J. Physiol. 224:552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronson, P.S. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. J. Membrain Biol. 42, 81–98 (1978). https://doi.org/10.1007/BF01870395

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870395

Keywords

Navigation