Skip to main content
Log in

Membrane potentials associated with Ca-induced K conductance in human red blood cells: Studies with a fluorescent oxonol dye, WW 781

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A divalent anionic dye, bis-[3-methyl-1-p-sulfophenyl-5-pyrazolone-(4)]-pentamethine oxonol (WW 781) is a rapidly responding fluorescent indicator of KCl diffusion potentials induced in human red blood cells with valinomycin, gramicidin, and with the Ca ionophore A 23187 in the presence of external Ca. WW 781 has a sensitivity of 0.13% ΔF/mV, a detection limit of 10 mV, a response time of less than 1 sec, and exhibits a decrease in fluorescence intensity upon hyperpolarization without detectable shifts in absorption or emission peaks. This dye does not perturb the normal resting potential, and unlike the slow permeant cyanine dyes, does not inhibit Ca-induced K conductance in human red blood cells. However, WW 781 does stimulate Ca-induced unidirectional Rb efflux. With Ca plus A 23187, the initial rapid change in dye fluorescence is sensitive to [Ca] o and to [A 23187], is reversible with excess EGTA, and is inhibited by quinine, oligomycin, and by trifluoperazine. A biphasic dependence of hyperpolarization on K o is evident at pH 6, where the ionic selectivity of activation is K, Rb>Cs>Na and that of conductance is K, Rb>Cs. Conditions were defined which permitted continuous monitoring ofE m for at least 10 min, and the time dependence of the Ca-induced potentials was characterized. Since the properties of the Ca-induced changes in dye fluorescence correlate well with the known characteristics of Ca-induced K permeability, we conclude that WW 781 is a useful indicator of changes inE m, provided that sufficient controls are employed to separate direct effects of Ca on dye fluorescence from the effects ofE m on fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armando-Hardy, M., Ellory, J.C., Ferreira, H.G., Fleminger, S., Lew, V.L. 1975. Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine.J. Physiol. (London) 250:32P-33P

    Google Scholar 

  • Baylor, S.M., Chandler, W.K., Marshall, M.W. 1981. Studies in skeletal muscle using optical probes of membrane potential.In: The Regulation of Muscle Contraction: Excitation-Contraction Coupling. A. Grinnell, editor. pp. 97–127. Academic Press, New York

    Google Scholar 

  • Beeler, T.J., Farmen, R.H., Martonosi, A.N. 1981. The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum.J. Membrane Biol. 62:113–137

    Google Scholar 

  • Blum, R.M., Hoffman, J.F. 1971. The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells.J. Membrane Biol. 6:315–328

    Google Scholar 

  • Blum, R.M., Hoffman, J.F. 1972. Ca-induced K transport in human red cells: Localization of the Ca-sensitive site to the inside of the membrane.Biochem. Biophys. Res. Commun. 46:1146–1152

    PubMed  Google Scholar 

  • Cohen, L.B., Hoffman, J.F. 1982. Optical measurements of membrane potential.In: Techniques in Cellular Physiology. P 118:1–13. Elsevier/North Holland

  • Cohen, L.B., Kamino, K., Lesher, S., Wang, C.H., Waggoner, A.S., Grinvald, A. 1977. Possible improvements in optical methods for monitoring membrane potential.Biol. Bull. (Woods Hole, Mass.) 153:419

    Google Scholar 

  • Cohen, L.B., Salzberg, B.M. 1978. Optical measurement of membrane potential.Rev. Physiol. Biochem. Pharmacol. 83:35–88

    PubMed  Google Scholar 

  • Dillon, S., Morad, M. 1981. A new laser scanning system for measuring action potential propagation in the heart.Science 214:453–456

    PubMed  Google Scholar 

  • Dodge, J.T., Mitchell, C., Hanahan, D.J. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.Arch. Biochem. Biophys. 100:119–130

    PubMed  Google Scholar 

  • Ekman, A., Manninen, V., Salminen, S. 1969. Ion movements in red cells treated with propranolol.Acta Physiol. Scand. 75:333–344

    PubMed  Google Scholar 

  • Freedman, J.C. 1980. Oxonol 781 fluorescence responds to membrane potentials in the Gardos effect of human red blood cells.Fed. Proc. 39:2130

    Google Scholar 

  • Freedman, J.C., Hoffman, J.F. 1979a. Ionic and osmotic equilibria of human red blood cells treated with nystatin.J. Gen. Physiol. 74:157–185

    Google Scholar 

  • Freedman, J.C., Hoffman, J.F. 1979b. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.J. Gen. Physiol. 74:187–212

    Google Scholar 

  • Freedman, J.C., Hoffman, J.F. 1979c. Properties of a fast fluorescent dye for membrane potentials in human red blood cells.Biophys. J. 25:302a

    Google Scholar 

  • Freedman, J.C., Laris, P.C. 1981. Electrophysiology of cells and organelles: Studies with optical potentiometric indicators.Int. Rev. Cytol., Supp. 12. pp. 177–246

    Google Scholar 

  • Freedman, J.C., Novak, T.S. 1981. Characteristics of voltages associated with Ca-induced K conductance in human red blood cells, as studied by means of a fluorescent oxonol dye, WW 781.Biophys. J. 33:3a

    Google Scholar 

  • Gardos, G. 1959. The role of calcium in the potassium permeability of human erythrocytes.Acta Physiol. Acad. Sci. Hung. 15:121–125

    Google Scholar 

  • Gardos, G., Szasz, I., Sarkadi, B. 1977. Effect of intracellular calcium on the cation transport processes in human red cells.Acta Biol. Med. Ger. 36:823–829

    PubMed  Google Scholar 

  • Glynn, I.M., Warner, A.E. 1972. Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug's antiarrhythmic effect.Br. J. Pharmacol. 44:271–278

    PubMed  Google Scholar 

  • Goldinger, J.M., Hoffman, J.F. 1976. Mechanism of propranolol induced Ca-dependent K efflux from human red blood cells.Fed. Proc. 35:834

    Google Scholar 

  • Gupta, R.K., Salzberg, B.M., Grinvald, A., Cohen, L.B., Kamino, K., Lesher, S., Boyle, M.B., Waggoner, A.S., Wang, C.H. 1981. Improvements in optical methods for measuring rapid changes in membrane potential.J. Membrane Biol. 58:1–15

    Google Scholar 

  • Heinz, A., Passow, H. 1980. Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts.J. Membrane Biol. 57:119–131

    Google Scholar 

  • Heytler, P.G., Prichard, W.W. 1962. A new class of uncoupling agents — carbonyl cyanide phenylhydrazones.Biochem. Biophys. Res. Commun. 7:272–275

    PubMed  Google Scholar 

  • Hladky, S.B., Rink, T.J. 1976. Potential difference and the distribution of ions across the human red blood cell membrane: A study of the mechanism by which the fluorescent cation, diS-C3 (5) reports membrane potential.J. Physiol. (London) 263:287–319

    Google Scholar 

  • Hoffman, J.F., Blum, R.M. 1977. On the nature of the pathway used for Ca-dependent K movement in human red blood cells.Adv. Exp. Med. Biol. 84:381–405

    PubMed  Google Scholar 

  • Hoffman, J.F., Knauf, P.A. 1973. The mechanism of the increased K transport induced by Ca in human red blood cells.In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch and W. Wilmans, editors. pp. 66–70. G. Thieme, Publishers, Stuttgart

    Google Scholar 

  • Hoffman, J.F., Laris, P.C. 1974. Determinations of membrane potentials in human andAmphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519–552

    Google Scholar 

  • Hoffman, J.F., Tosteson, D.C., Whittam, R. 1960. Retention of potassium by human erythrocyte ghosts.Nature (London) 185:186–187

    Google Scholar 

  • Hoffman, J.F., Yingst, D.R., Goldinger, J.M., Blum, R.M., Knauf, P.A. 1980. On the mechanism of Ca-dependent K transport in human red blood cells.In: Membrane Transport in Erythrocytes. Alfred Benzon Symposium 14. U.V. Lassen, H.H. Ussing and J.O. Wieth, editors. pp. 178–192. Munksgaard, Copenhagen

    Google Scholar 

  • Hunter, M.J. 1977. Human erythrocyte anion permeabilities measured under conditions of net charge transfer.J. Physiol. (London) 268:35–49

    Google Scholar 

  • Knauf, P.A., Fuhrman, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363–386

    Google Scholar 

  • Knauf, P.A., Riordan, J.R., Schuhman, B., Wood-Guth, I., Passow, H. 1975. Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts.J. Membrane Biol. 25:1–22

    Google Scholar 

  • Kregenow, F.M., Hoffman, J.F. 1972. Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells.J. Gen. Physiol. 60:406–429

    PubMed  Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1976. Effect of calcium on the membrane potential ofAmphiuma red cells.J. Membrane Biol. 26:51–70

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1980. Calcium related transient changes in membrane potential of red cells. Experimental observations and a model involving calcium-dependent regulator (CDR).In: Membrane Transport in Erythrocytes. Alfred Benzon Symposium 14. U.V. Lassen, H.H. Ussing and J.O. Wieth, editors. pp. 256–273. Munksgaard, Copenhagen

    Google Scholar 

  • Lepke, S., Passow, H. 1972. The effect of pH at hemolysis on the reconstitution of low cation permeability in human erythrocyte ghosts.Biochim. Biophys. Acta 255:696–702

    PubMed  Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1976. Variable Ca sensitivity of a K-selective channel in intact red cell membranes.Nature (London) 263:336–338

    Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1977. The effect of Ca on the K permeability of red cells.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 93–100. Academic Press, New York

    Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.Curr. Top. Membr. Transp. 10:217–277

    Google Scholar 

  • Liu, C., Hermann, T.E. 1976. Characterization of ionomycin as a calcium ionophore.J. Biol. Chem. 253:5892–5894

    Google Scholar 

  • Macey, R.I., Adorante, J.S., Orme, F.W. 1978. Erythrocyte membrane potentials determined by hydrogen ion distribution.Biochim. Biophys. Acta 512:284–295

    PubMed  Google Scholar 

  • Motais, R. 1977. Organic anion transport in red blood cells.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 197–220. Academic Press, New York

    Google Scholar 

  • Myers, V.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of Gramicidin A. II. The ion selectivity.Biochim. Biophys. Acta 274:313–322

    PubMed  Google Scholar 

  • Passow, H. 1963. Metabolic control of the passive permeability for potassium ions.In: Cell Interface Reactions. A.D. McLaren, P. Mitchell and H. Passow, editors. pp. 57–101. Scholar's Library, New York

    Google Scholar 

  • Passow, H. 1981. Selective enhancement of potassium efflux from red blood cells by lead. A comparison with the effects of calcium.In: The Function of Red Blood Cells: Erythrocyte Pathobiology. D.F.H. Wallach, editor. pp. 79–101. Alan R. Liss, New York

    Google Scholar 

  • Raaflaub, J. 1956. Applications of metal buffers and metal indicators in biochemistry.Methods Biochem. Anal. 3:301–325

    PubMed  Google Scholar 

  • Reed, P.W. 1976. Effects of the divalent cation ionophore A 23187 on potassium permeability of rat erythrocytes.J. Biol. Chem. 251:3489–3494

    PubMed  Google Scholar 

  • Reichstein, E., Rothstein, A. 1981. Effects of quinine on Ca++-induced K+ efflux from human red blood cells.J. Membrane Biol. 59:57–63

    Google Scholar 

  • Riordan, J.R., Passow, H. 1971. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts.Biochim. Biophys. Acta 249:601–605

    PubMed  Google Scholar 

  • Sarkadi, B., Szasz, I., Gardos, G. 1976. The use of ionophores for rapid loading of human red cells with radioactive cations for cation-pump studies.J. Membrane Biol. 26:357–370

    Google Scholar 

  • Simons, T.J.B. 1976a. Carbocyanine dyes inhibit Ca-dependent K efflux from human red cell ghosts.Nature (London) 264:467–469

    Google Scholar 

  • Simons, T.J.B. 1976b. The preparation of human red cell ghosts containing calcium buffers.J. Physiol. (London) 256:209–225

    Google Scholar 

  • Simons, T.J.B. 1976c. Calcium-dependent potassium exchange in human red cell ghosts.J. Physiol. (London) 256:227–244

    Google Scholar 

  • Simons, T.J.B. 1979. Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts.J. Physiol. (London) 288:481–507

    Google Scholar 

  • Sims, P.J., Waggoner, A.S., Wang, C., Hoffman, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidyl choline vesicles.Biochemistry 13:3315–3330

    PubMed  Google Scholar 

  • Steck, T.L. 1974. Preparation of impermeable inside-out and right-side-out vesicles from erythrocyte membranes.In: Methods of Membrane Biology. E. Korn, editor. Vol. 2, pp. 245–281. Plenum Publishing Co., New York

    Google Scholar 

  • Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng. 8:47–68

    PubMed  Google Scholar 

  • Wieth, J.O., Brahm, J., Funder, J. 1980. Transport and interactions of anions and protons in the red blood cell membrane.Ann. N.Y. Acad. Sci. 341:394–418

    PubMed  Google Scholar 

  • Wieth, J.O., Tosteson, M.T. 1979. Organotin-mediated exchange diffusion of anions in human red cells.J. Gen. Physiol. 73:765–788

    PubMed  Google Scholar 

  • Yingst, D.R., Hoffman, J.F. 1978. Changes of intracellular Ca++ as measured by Arsenazo III in relation to the K permeability of human erythrocyte ghosts.Biophys. J. 23:463–471

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, J.C., Novak, T.S. Membrane potentials associated with Ca-induced K conductance in human red blood cells: Studies with a fluorescent oxonol dye, WW 781. J. Membrain Biol. 72, 59–74 (1983). https://doi.org/10.1007/BF01870314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870314

Key words

Navigation