Skip to main content
Log in

Compartmental analysis of potassium efflux from growth-oriented heart cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Radioisotopic flux studies were initiated with a new preparation of growth-oriented heart cells to determine the contribution of heterogeneous cell types and the limitations of extracellular diffusion in quantitating the passive movement of potassium ions. The efflux of potassium-42 from contractile preparations, which contain two populations of cells, cardiac muscle and fibroblastlike, could be resolved into two components similar to that described for naturally occurring preparations of cardiac muscle. Compartmental analysis of the efflux data, using analog and digital computational methods, resolved the tracer kinetics into a slow compartment (k=0.015 min−1) associated with fibroblastlike cells and a fast compartment (k=0.067 min−1) associated with the cardiac muscle cells. The rate constants derived from compartmental analysis were independent of tracer equilibration and preparation dry weight. Analytical measurements of the preparations provided a quantitative basis for determining the transmembrane potassium fluxes from the tracer kinetics. Cardiac muscle cells stimulated at a rate of 150 min−1 in the presence of 5.4mm external potassium were found to have a potassium efflux of 15.7 pmoles cm−2sec−1 whereas the value obtained for the fibroblastlike cells was 1.88 pmoles cm−2sec−1. Diffusional limitations of42K efflux were analyzed for several important variables which can affect isotopic reflux, namely, transmembrane flux, cell volume-to-surface area and cell packing fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burrows, R., Lamb, J.F. 1962. Sodium and potassium fluxes in cells cultured from chick embryo heart muscle.J. Physiol. (London) 162:510

    Google Scholar 

  2. Caldwell, P.C., Keynes, R.D. 1969. The exchange of22Na between frog sartorius muscle and the bathing medium.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stämpfli, editors. p. 63. Springer-Verlag, New York

    Google Scholar 

  3. Carmeliet, E.E. 1961. Chloride and Potassium Permeability in Cardiac Purkinje Fibres. Editions Arscia S.A., Bruxelles

    Google Scholar 

  4. Carmeliet, E.E., Horres, C.R., Lieberman, M., Vereecke, J.S. 1976. Developmental aspects of potassium flux and permeability of the embryonic chick heart.J. Physiol. (London) 254:673

    Google Scholar 

  5. Cheneval, J.P., Hyde, A., Blondel, B., Girardier, L. 1972. Heart cells in culture: Metabolism, action potential, and transmembrane ionic movements.J. Physiol. (Paris) 64:413

    Google Scholar 

  6. Coraboeuf, E., Delahayes, J., Sjöstrand, U. 1969. A comparative study of K42 and Na24 movements during the cardiac cycle.Acta Physiol. Scand. 76:40

    Google Scholar 

  7. Goerke, J., Page, E. 1965. Cat heart muscle in vitro. VI. Potassium exchange in papillary muscles.J. Gen. Physiol. 48:933

    PubMed  Google Scholar 

  8. Goldberg, P.B., Baskin, S.I., Roberts, J. 1975. Effects of aging on ionic movements of atrial muscle.Fed. Proc. 34:188

    PubMed  Google Scholar 

  9. Grupp, G. 1963. Potassium exchange in the dog heart in situ.Circ. Res. 13:279

    PubMed  Google Scholar 

  10. Haas, H.G., Glitsch, H.G., Kern, R. 1966. Kalium-Fluxe und Membranpotential am Froschvorhof in Abhängigkeit von der Kalium-Aussenkonzentration.Pfluegers Arch. 288:43

    Google Scholar 

  11. Haas, H.G., Kern, R. 1966. Potassium fluxes in voltage clamped Purkinje fibres.Pfluegers Arch. 291:69

    Google Scholar 

  12. Horres, C.R. 1975. Potassium tracer kinetics of growth oriented heart cells in tissue culture. Ph.D. Dissertation. Duke University, Durham, N.C.

    Google Scholar 

  13. Horres, C.R., Lieberman, M. 1975. Compartmental analysis of potassium-42 exchange kinetics in embryonic heart.Circulation 52 (Suppl. II):20 (abstr)

    Google Scholar 

  14. Horres, C.R., Lieberman, M., Purdy, J.E. 1977. Growth orientation of heart cells on nylon monofilament. Determination of the volume-to-surface area ratio, and intracellular potassium concentration.J. Membrane Biol. 34:313

    Google Scholar 

  15. Hudson, J.W., Eller, R.R. 1974.42K efflux, EKG and tension in isolated perfused hearts of white-footed mice.Comp. Biochem. Physiol. (A) 49:743

    Google Scholar 

  16. Humphrey, E.W., Johnson, J.A. 1960. Potassium flux in the isolated perfused rabbit heart.Am. J. Physiol. 198:1217

    Google Scholar 

  17. Huxley, A.F. 1960. Appendix to: Solomon, A.K. Compartmental methods of kinetic analysis.In: Mineral Metabolism. C.L. Comar and F. Bronner, editors. p. 163. Academic Press Inc., New York

    Google Scholar 

  18. Juncker, D.F., Greene, E.A., Stish, R., Lorber, V. 1972. Potassium efflux from amphibian atrium during the cardiac cycle.Circ. Res. 30:350

    PubMed  Google Scholar 

  19. Keynes, R.D. 1951. The leakage of radioactive potassium from stimulated nerve.J. Physiol. (London) 113:99

    Google Scholar 

  20. Keynes, R.D., 1954. The ionic fluxes in frog muscle.Proc. R. Soc. London (Biol.) 142:359

    Google Scholar 

  21. Klein, R.L. 1960. Ontogenesis of K and Na fluxes in embryonic chick heart.Am. J. Physiol. 199:613

    PubMed  Google Scholar 

  22. Lamb, J.F., McGuigan, J.A.S. 1965. Potassium fluxes in quiescent and beating frog ventricle.Nature (London) 205:1115

    Google Scholar 

  23. Lamb, J.F., McGuigan, J.A.S. 1968. The efflux of potassium, sodium, chloride, calcium, and sulfate ions and of sorbital and glycerol during the cardiac cycle in frog's ventricle.J. Physiol. (London) 195:283

    Google Scholar 

  24. Langer, G.A. 1968. Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility.Physiol. Rev. 48:708

    PubMed  Google Scholar 

  25. Langer, G.A., Brady, A.J. 1966. Potassium in dog ventricular muscle: Kinetic studies of distribution and effects of varying frequency of contraction and potassium concentration of perfusate.Circ. Res. 18:164

    Google Scholar 

  26. Langer, G.A., Brady, A.J. 1968. The effects of temperature upon contraction and ionic exchange in rabbit ventricular myocardium.J. Gen. Physiol. 52:682

    PubMed  Google Scholar 

  27. Lieberman, M., Sawanobori, T., Kootsey, J.M., Johnson, E.A., 1975. A synthetic strand of cardiac muscle. Its passive electrical properties.J. Gen. Physiol. 65:527

    PubMed  Google Scholar 

  28. Lucier, G.E., Mainwood, G.W. 1972. The measurement of potassium efflux in superfused frog sartorius muscles.Can. J. Physiol. Pharmacol. 50:123

    PubMed  Google Scholar 

  29. MacDonald, R.L., Mann, J.E., Jr., Sperelakis, N. 1974. Derivation of general equations describing tracer, diffusion in any two-compartment tissue with application to ionic diffusion in cylindrical muscle bundles.J. Theor. Biol. 45:107

    PubMed  Google Scholar 

  30. Manasek, F.J. 1976. Macromolecules of the extracellular compartment of embryonic and mature hearts.Circ. Res. 38:331

    PubMed  Google Scholar 

  31. McLennan, H. 1956. The diffusion of potassium, inulin, and thiocyanate in the extracellular spaces of mammalian muscle.Biochim. Biophys. Acta 21:472

    PubMed  Google Scholar 

  32. Millman, J., Taub, H. 1965. Pulse, Digital, and Switching Waveforms. McGraw-Hill, New York

    Google Scholar 

  33. Page, E. 1965. Cat heart muscle in vitro. VII. The temperature dependence of steady state K exchange in presence and absence of NaCl.J. Gen. Physiol. 48:949

    PubMed  Google Scholar 

  34. Page, E., Power, B., Borer, J.S., Klegerman, M.E. 1968. Rapid exchange of cellular or cell surface potassium in the rat's heart.Proc. Nat. Acad. Sci. USA 60:1323

    PubMed  Google Scholar 

  35. Parker, R.C. 1966. Methods of Tissue Culture. p. 57. Harper and Row, New York

    Google Scholar 

  36. Polimeni, P.I. 1968. Transmembrane Potassium Fluxes in Isolated Cardiac Tissue. Ph.D. Dissertation. State University of New York, Downstate Medical Center

  37. Polimeni, P.I., Vassalle, M. 1970. Potassium fluxes in Purkinje and ventricular muscle fibers during rest and activity.Am. J. Physiol. 218:1381

    PubMed  Google Scholar 

  38. Rayner, B., Weatherall, M. 1959. Acetylcholine and potassium movements in rabbit auricles.J. Physiol. (London) 146:392

    Google Scholar 

  39. Schreiber, S.S. 1956. Potassium and sodium exchange in the working frog heart: Effects of overwork, external concentrations of potassium and ouabain.Am. J. Physiol. 185:337

    PubMed  Google Scholar 

  40. Schreiber, S.S., Oratz, M., Rothschild, M.A. 1961. Effect of ouabain on potassium exchange in the mammalian heart.Am. J. Physiol. 200:1055

    PubMed  Google Scholar 

  41. Shine, K.I., Douglas, A.M. 1974. Magnesium effects on ionic exchange and mechanical function in rat ventricle.Am. J. Physiol. 227:317

    PubMed  Google Scholar 

  42. Weidmann, S. 1966. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle.J. Physiol. (London) 187:323

    Google Scholar 

  43. Wood, J.C., Conn, H.J., Jr. 1958. Potassium transfer kinetics in the isolated dog heart. Influence of contraction rate, ventricular fibrillation, high serum potassium and acetylcholine.Am. J. Physiol. 195:451

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horres, C.R., Lieberman, M. Compartmental analysis of potassium efflux from growth-oriented heart cells. J. Membrain Biol. 34, 331–350 (1977). https://doi.org/10.1007/BF01870307

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870307

Keywords

Navigation