Skip to main content
Log in

Growth orientation of heart cells on nylon monofilament

Determination of the volume-to-surface area ratio and intracellular potassium concentration

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A new method is described for orienting the growth of embryonic chick heart cells as thin annuli about nylon monofilament. Analytical measurements of cell water, intracellular potassium, cell volume, and cell surface area incorporate several new techniques and provide the quantitative basis for characterizing the respective cell types in the preparation. The measurements support the hypothesis that tissue culture methodology does not alter the morphological and physiological properties of cardiac muscle cells. The preparations are ideally suited for radiotracer studies since tissue mass can be increased while retaining a relatively short diffusional distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burrows, R., Lamb, J.F. 1962. Sodium and potassium fluxes in cells cultured from chick embryo heart muscle.J. Physiol. (London) 162:510

    Google Scholar 

  2. Carmeliet, E.E. 1961. Chloride and Potassium Permeability in Cardiac Purkinje Fibres. Editions Arscia S.A., Bruxelles

    Google Scholar 

  3. Carmeliet, E.E., Horres, C.R., Lieberman, M., Vereecke, J.S. 1975. Potassium permeability in the embryonic chick heart: Changes with age, external K and valinomycin.In: Developmental and Physiological Correlates of Cardiac Muscle. M. Lieberman and T. Sano, editors. p. 103. Raven Press, New York

    Google Scholar 

  4. Edelman, G.M., Rutishauser, U., Millette, C.F. 1971. Cell fractionation and arrangement on fibers, beads, and surfaces.Proc. Nat. Acad. Sci. USA 68:2153

    PubMed  Google Scholar 

  5. Eisenberg, B.R., Kuda, A.M., Peter, J.B. 1974. Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig.J. Cell Biol. 60:732

    PubMed  Google Scholar 

  6. Girardi, A.J., MacMichael, H., Jr., Henle, W. 1956. The use of HeLa cells in suspension for the quantitative study of virus propagation.Virology 2:532

    PubMed  Google Scholar 

  7. Haas, H.G., Kern, R. 1966. Potassium fluxes in voltage clamped Purkinje fibres.Pfluegers Arch. 291:69

    Google Scholar 

  8. Harrison, R.G. 1914. The reaction of embryonic cells to solid structures.J. Exp. Zool. 17:521

    Google Scholar 

  9. Harsch, M., Green, J.W. 1963. Electrolyte analyses of chick embryonic fluids and heart tissues.J. Cell. Comp. Physiol. 62:319

    Google Scholar 

  10. Horres, C.R. 1975. Potassium tracer kinetics of growth oriented heart cells in tissue culture. Ph. D. Dissertation, Duke University, Durham, N.C.

    Google Scholar 

  11. Horres, C.R., Lieberman, M. 1975. Compartmental analysis of potassium-42 exchange kinetics in embryonic heart.Circulation 52 (Suppl. II): 20 (abstr.)

    Google Scholar 

  12. Horres, C.R., Lieberman, M. 1977. Compartmental analysis of potassium efflux from growth-oriented heart cells.J. Membrane Biol. 34:331

    Google Scholar 

  13. Kaighn, M.E., Ebert, J.D., Stott, P.M. 1966. The susceptibility of differentiating muscle clones to Rous sarcoma virus.Proc. Nat. Acad. Sci. USA 56:133

    PubMed  Google Scholar 

  14. Karnovsky, M.J. 1965. A formaldehyde-paraformaldehyde fixative of high osmolarity for use in electron microscopy.J. Cell Biol. 27:137a

    Google Scholar 

  15. Keynes, R.D., Lewis, P.R. 1951. The sodium and potassium content of cephalopod nerve fibres.J. Physiol. (London) 114:151

    Google Scholar 

  16. Lieberman, M. 1973. Electrophysiological studies of a synthetic strand of cardiac muscle.Physiologist 16:551

    PubMed  Google Scholar 

  17. Lieberman, M., Roggeveen, A.E., Purdy, J.E., Johnson, E.A. 1972. Synthetic strands of cardiac muscle: Growth and physiological implication.Science 175:909

    PubMed  Google Scholar 

  18. Lieberman, M., Sawanobori, T., Kootsey, J.M., Johnson, E.A. 1975. A synthetic strand of cardiac muscle. Its passive electrical properties.J. Gen. Physiol. 65:527

    PubMed  Google Scholar 

  19. Lieberman, M., Sawanobori, T., Shigeto, N., Johnson, E.A. 1975. Physiologic implications of heart muscle in tissue culture.In: Developmental and Physiological Correlates of Cardiac Muscle. M. Lieberman and T. Sano, editors. p. 139. Raven Press, New York

    Google Scholar 

  20. Manasek, F.J. 1970. Histogenesis of the embryonic myocardiumAm. J. Cardiol. 25:149

    PubMed  Google Scholar 

  21. McDonald, T.F., DeHaan, R.L. 1973. Ion levels and membrane potential in chick heart tissue and cultured cells.J. Gen. Physiol. 61:89

    PubMed  Google Scholar 

  22. Okada, T., Nakamori, J., Hirayama, M. 1971. Primary tissue culture method using glass fibre.Hiroshima J. Med. Sci. 20:269

    PubMed  Google Scholar 

  23. Page, E. 1962. Cat heart muscle in vitro. III. The extracellular space.J. Gen. Physiol. 46:201

    PubMed  Google Scholar 

  24. Page, E. 1965. Ion movement in heart muscle: Tissue compartments and the experimental definition of driving forces.Ann. N.Y. Acad. Sci. 127:34

    PubMed  Google Scholar 

  25. Page, E., McCallister, L.P., Power, B. 1971. Stereological measurements of cardiac ultrastructures implicated in excitation contraction coupling.Proc. Nat. Acad. Sci. USA 68:1465

    PubMed  Google Scholar 

  26. Polinger, I.S. 1970. Separation of cell types in embryonic heart cell cultures.Exp. Cell Res. 63:78

    PubMed  Google Scholar 

  27. Purdy, J.E., Lieberman, M., Roggeveen, A.E., Kirk, R.G. 1972. Synthetic strands of cardiac muscle. Formation and structure.J. Cell Biol. 55:563

    PubMed  Google Scholar 

  28. Schmid, H.E., Meschan, I., Watts, F.C., Hosick, T., Muelbaecher, C.A. 1970. Effect of free131I on renal excretion of diatrizoate-131I, an inulin substitute.Am. J. Physiol. 218:903

    Google Scholar 

  29. Sitte, H. 1967. Morphometrische Untersuchungen an Zellen.In: Quantitative Methods in Morphology. E.R. Weibel and H. Elias, editors. p. 167. Springer-Verlag, New York

    Google Scholar 

  30. Sommer, J.R., Johnson, E.A. 1968. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers.J. Cell Biol. 36:497

    PubMed  Google Scholar 

  31. Sommer, J.R., Johnson, E.A. 1969. Cardiac muscle: A comparative ultrastructural study with special reference to frog and chicken hearts.Z. Zellforsch. 98:437

    PubMed  Google Scholar 

  32. Waymouth, C. 1974. To disaggregate or not to disaggreegate. Injury and cell disaggregation, transient or permanent?In Vitro 10:97

    PubMed  Google Scholar 

  33. Weibel, E.R. 1972. A stereological method for estimating volume and surface of sarcoplasmic reticulum.J. Microscop. 95:229

    Google Scholar 

  34. Weibel, E.R. 1973. Stereological techniques for electron microscopic morphometry.In: Principles and Techniques of Electron Microscopy Biological Applications. M.A. Hayat, editor. Vol. 3, p. 239. Van Nostrand Rheinhold Company, New York

    Google Scholar 

  35. Yaffe, D. 1968. Retention of differentiation potentialities during prolonged cultivation of myogenic cells.Proc. Nat. Acad. Sci. USA 61:477

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horres, C.R., Lieberman, M. & Purdy, J.E. Growth orientation of heart cells on nylon monofilament. J. Membrain Biol. 34, 313–329 (1977). https://doi.org/10.1007/BF01870306

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870306

Keywords

Navigation