Skip to main content
Log in

Carrier-mediated ion transport through black membranes of lipid mixtures and its coupling to Ca++-induced phase separation

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Voltage jump-current relaxation experiments have been performed with valinomycin-doped membranes of mixtures of 1,2-dipentadecylmethylidene-glycero-3-phosphorylcholine (PC) and charged-phosphatidic acid (PA). Both relaxation processes predicted by a simple carrier model could be resolved which allowed the calculation of the rate constants of the Rb+ transport. The dependence of the rate constants on the membrane composition indicates that (i) the lipids in the mixed membranes are homogeneously distributed and that (ii) no major difference exists between the composition of the membrane and that of the torus. The analysis of the stationary conductance data, however, shows that the valinomycin content of the mixed membranes depends strongly on their lipid composition. Addition of Ca++ ions to a 1∶1 mixture induces a phase separation into PA domains of very low conductivity and PC-enriched regions of high conductivity. Half saturation is reached atc ca=5×10−4 m. At 10−2 m Ca++ in the aqueous phase, the rate constants clearly indicate that all PA molecules are electrically “passivated” and only pure PC domains contribute to the membrane current. A detailed picture is thus derived of the coupling of a model transport system to the externally triggered membrane reorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, O. 1979. Polymorphismus in reinen und gemischten Lipid-Monoschichten. Ph.D. Thesis, University of Ulm, Germany

    Google Scholar 

  • Apell, H.-J., Bamberg, E., Läuger, P. 1979. Effects of surface charge on the conductance of the gramicidin channel.Biochim. Biophys. Acta 552:369–378

    Google Scholar 

  • Benz, R., Cros, D. 1978. Influence of sterols on ion transport through lipid bilayer membranes.Biochim. Biophys. Acta 506:265–280

    Google Scholar 

  • Benz, R., Läuger, P. 1977. Transport kinetics of dipicrylamine through lipid bilayer membranes: Effects of membrane structure.Biochim. Biophys. Acta 468:245–258

    Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339–364

    Google Scholar 

  • Blume, A., Eibl, H. 1981. A calorimetric study of the thermotropic behaviour of 1,2-dipentadecylmethylidene phospholipids.Biochim. Biophys. Acta 640:609–618

    Google Scholar 

  • Boheim, G., Hanke, W., Eibl, H. 1980. Lipid phase transition in planar bilayer membranes and its effect on carrier- and pore-mediated ion transport.Proc. Natl. Acad. Sci. USA 77:3403–3407

    Google Scholar 

  • Eibl, H., Nicksch, A. 1978. The synthesis of phospholipids by direct amination.Chem. Phys. Lipids 22:1–8

    Google Scholar 

  • Galla, H.-J., Sackmann, E. 1975. Chemically induced phase separation in mixed vesicles containing phosphatidic acid. An optical study.J. Am. Chem. Soc. 97:4114–4120

    Google Scholar 

  • Ito, T., Ohnishi, S. 1974. Ca++-induced lateral phase separations in phosphatidic acid-phosphatidylcholine membranes.Biochim. Biophys. Acta 352:29–37

    Google Scholar 

  • Knoll, W. 1976. Kinetische Untersuchungen zum Rb+-Transport durch Valinomycin über künstliche Lipid-Membranen. Ph.D. Tesis, University of Konstanz, Germany

    Google Scholar 

  • Knoll, W., Stark, G. 1975. An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes.J. Membrane Biol. 25:249–270

    Google Scholar 

  • Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin.Science 174:412–415

    Google Scholar 

  • Laclette, J.P., Montal, M. 1977. Interaction of calcium with negative lipids in planar bilayer membranes.Biophys. J. 19:199–202

    Google Scholar 

  • Laprade, R., Ciani, S.M., Eisenman, G., Szabo, G. 1974. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpretation.In: Membranes — A Series of Advances. G. Eisenman, editor. Vol. 3, pp. 127–214. Marcel Dekker, New York

    Google Scholar 

  • Läuger, P. 1972. Carrier-mediated ion transport.Science 178:24–30

    Google Scholar 

  • Läuger, P., Neumcke, B. 1973. Theoretical analysis of ion conductance in lipid bilayer membranes.In: Membranes — A Series of Advances. G. Eisenman, editor. Vol. 2, pp. 1–59. Marcel Dekker, New York

    Google Scholar 

  • Läuger, P., Stark, G. 1970. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 211:458–466

    Google Scholar 

  • Lee, A.G. 1977. Lipid phase transitions and phase diagrams. II. Mixtures involving lipids.Biochim. Biophys. Acta 472:285–344

    Google Scholar 

  • Lesslauer, W., Richter, J., Läuger, P. 1967. Some electrical properties of bimolecular phosphatidyl inositol membranes.Nature (London) 213:1224–1226

    Google Scholar 

  • McLaughlin, S.G.A. 1977. Electrostatic potentials at membrane-solution interfaces.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 9, pp. 71–144.

  • Mueller, P., Rudin, D.O., Tien, H.T., Wescott, W.C. 1962. Reconstitution of excitable membrane structure in vitro and its transformation into an excitable system.Nature (London) 194:979–980

    Google Scholar 

  • Neher, E., Eibl, H. 1977. The influence of phospholipid polar groups on gramicidin channels.Biochim. Biophys. Acta 464:37–44

    Google Scholar 

  • Ohnishi, S., Ito, T. 1974. Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes.Biochim. 13:881–887

    Google Scholar 

  • Overath, P., Schairer, H.U., Stoffel, W. 1970. Correlation of in vivo and in vitro phase transitions of membrane lipids inE. coli.Proc. Natl. Acad. Sci. USA 67:606–612

    Google Scholar 

  • Pohl, G.W., Knoll, W., Gisin, B.F., Stark, G. 1976. Optical and electrical studies on dansyllysine-valinomycin in thin lipid membranes.Biophys. Struct. Mechanism 2:119–137

    Google Scholar 

  • Rose, B., Loewenstein, W.R. 1976. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin.J. Membrane Biol. 28:87–119

    Google Scholar 

  • Sackmann, E. 1978. Dynamic molecular organization in vesicles and membranes.Ber. Bunsenges. Phys. Chem. 82:891–909

    Google Scholar 

  • Stark, G., Benz, R., Pohl, G.W., Janko, K. 1972. Valinomycin as a probe for the study of structural changes in black lipid membranes.Biochim. Biophys. Acta 266:603–612

    Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.Biophys. J. 11:981–994

    Google Scholar 

  • Szabo, G. 1974. Dual mechanism for the action of cholesterol on membrane permeability.Nature (London) 252:47–49

    Google Scholar 

  • Träuble, H. 1971. Phasenumwandlungen in Lipiden, mögliche Schaltprozesse in biologischen Membranen.Naturwissenschaften 58:277–284

    Google Scholar 

  • Träuble, H., Eibl, H. 1974. Electrostatic effects on lipid phase transition: Membrane structure and ionic environment.Proc. Natl. Acad. Sci. USA 71:214–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, G., Eibl, H. & Knoll, W. Carrier-mediated ion transport through black membranes of lipid mixtures and its coupling to Ca++-induced phase separation. J. Membrain Biol. 70, 147–155 (1982). https://doi.org/10.1007/BF01870224

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870224

Key Words

Navigation