Skip to main content
Log in

Transformation of a strictly coupled active transport system into a facilitated diffusion system by nystatin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The active hexose transport system ofChlorella vulgaris is obligatorily coupled to metabolic energy. No facilitated diffusion component, as in the β-galactoside transport ofEscherichia coli, for example, is observed withChlorella. In the presence of nystatin, however, facilitated diffusion of sugar analogues occurs. Thus, only under this condition can the classical overshoot experiment be successfully carried out. The net efflux of sugars induced by nystatin does not take place through holes. It can be explained by the assumption that the mobility of the unloaded carrier is less restricted in the presence of nystatin. Nystatin also changes theK m for influx, whereas theK m for efflux is not significantly affected. Possible roles of sterols in this eucaryotic sugar transport system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber, J., Shieh, Y. J. 1973. Sodium transport in Na+-richChlorella cells.Planta 111:13

    Google Scholar 

  2. Butler, K. W., Smith, I. C. P., Schneider, H. 1970. Sterol structure and ordering effects in spinlabelled phospholipid multibilayer structures.Biochim. Biophys. Acta 219:514

    PubMed  Google Scholar 

  3. Demel, R. A., Bruckdorfer, D. R., Van Deenen, L. L. M. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and Rb+.Biochim. Biophys. Acta 255:321

    PubMed  Google Scholar 

  4. Demel, R. A., Van Deenen, L. L. M., Kinsky, S. C. 1965. Penetration of lipid monolayers by polyene antibiotics. Correlation with selective toxicity and mode of action.J. Biol. Chem. 240:2749

    PubMed  Google Scholar 

  5. Feingold, D. S. 1965. The action of amphotericin B on Mycoplasma laidlawii.Biochem. Biophys. Res. Commun. 19:261

    PubMed  Google Scholar 

  6. Finkelstein, A., Cass, A. 1969. Permeability and electrical properties of thin lipid membranes.J. Gen. Physiol. 52:145s

    Google Scholar 

  7. Gottlieb, D., Carter, M. E., Wu, L., Stoneker, J. H. 1960. Inhibition of fungi by filipine and its antagonism by sterols.Phytopathology 50:594

    Google Scholar 

  8. Höfer, M., Kotyk, A. 1968. Tight coupling of monosaccharide transport and metabolism inRhodotorula gracilis.Folia Microbiol. 13:197

    Google Scholar 

  9. Horecker, B. L., Thomas, J., Monod, J. 1960. Galactose transport inEscherichia coli. I. General properties as studied in a galactokinaseless mutant.J. Biol. Chem. 235:1580

    PubMed  Google Scholar 

  10. Kennedy, E. P. 1966. Biochemical aspects of membrane function.In: Current Aspects of Biochemical Energetics. N. O. Kaplan and E. P. Kennedy, editors. p. 433. Academic Press Inc., New York-London

    Google Scholar 

  11. Kepes, A. 1960. Etudes cinétiques sur la galactoside perméase d'Escherichia coli.Biochim. Biophys. Acta 40:70

    PubMed  Google Scholar 

  12. Kinsky, S. C., Luse, S. A., Van Deenen, L. L. M. 1966. Interaction of polyene antibiotics with natural and artificial membrane systems.Fed. Proc. 25:1503

    PubMed  Google Scholar 

  13. Komor, E. 1974. Proton-coupled hexose transport inChlorella vulgaris. FEBS Letters (In press)

  14. Komor, E., Haass, D., Komor, B., Tanner, W. 1973. The active hexose uptake system ofChlorella vulgaris K m values for 6-deoxyglucose influx and efflux and their contribution to sugar accumulation.Europ. J. Biochem. 39:193

    PubMed  Google Scholar 

  15. Komor, E., Haass, D., Tanner, W. 1972. Unusual features of the active hexose uptake system ofChlorella vulgaris.Biochim. Biophys. Acta 266:649

    PubMed  Google Scholar 

  16. Komor, E., Tanner, W. 1971. Characterization of the active hexose transport system ofChlorella vulgaris.Biochim. Biophys. Acta 241:170

    PubMed  Google Scholar 

  17. Kotyk, A. 1973. Mechanisms of nonelectrolyte transport.Biochim. Biophys. Acta 300:183

    Google Scholar 

  18. Kotyk, A., Rihova, L. 1972. Transport of α-aminoisobutyric acid inSaccharomyces cerevisiae.Biochim. Biophys. Acta 288:380

    Google Scholar 

  19. Lampen, J. O. 1966. Interference by polyenic antifungal antibiotics (especially nystatin and filipin) with specific membrane functions.Symp. Soc. Gen. Microbiol. 16:111

    Google Scholar 

  20. Lampen, J. O., Arnow, P. M., Saffermann, R. S. 1960. Mechanism of protection by sterols against polyene antibiotics.J. Bacteriol. 80:200

    PubMed  Google Scholar 

  21. Marini, F., Arnow, P., Lampen, J. O. 1961. Effect of monovalent cations on the inhibition of yeast metabolism by nystatin.J. Gen. Microbiol. 24:51

    PubMed  Google Scholar 

  22. Norman, A. W., Demel, R. A., De Kruyff, B., Geurts van Kessel, W. S. M., Van Deenen, L. L. M. 1972. Studies on the biological properties of polyene antibiotics: Comparison of other polyenes with filipin in their ability to interact specifically with sterol.Biochim. Biophys. Acta 290:1

    PubMed  Google Scholar 

  23. Patterson, G. W. 1971. The distribution of sterols in algae.Lipids 6:120

    Google Scholar 

  24. Rosenberg, T., Wilbrandt, W. 1957. Uphill transport induced by counter flow.J. Gen. Physiol. 41:289

    PubMed  Google Scholar 

  25. Slayman, C. W., Tatum, E. L. 1964. Potassium transport inNeurospora. I. Intracellular sodium and potassium concentrations and cation requirements for growth.Biochim. Biophys. Acta 88:578

    PubMed  Google Scholar 

  26. Tanner, W. 1969. Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system ofChlorella.Biochem. Biophys. Res. Commun. 36:278

    PubMed  Google Scholar 

  27. Weber, M. M., Kinsky, S. C. 1965. Effect of cholesterol on the sensitivity of Mycoplasma laidlawii to the polyene antibiotic filipin.J. Bacteriol. 89:306

    PubMed  Google Scholar 

  28. Widdas, W. F. 1952. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer.J. Physiol. 118:23

    PubMed  Google Scholar 

  29. Winkler, H. H., Wilson, T. H. 1966. The role of energy coupling in the transport of β-galactoside byEscherichia coli.J. Biol. Chem. 241:2200

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komor, B., Komor, E. & Tanner, W. Transformation of a strictly coupled active transport system into a facilitated diffusion system by nystatin. J. Membrain Biol. 17, 231–238 (1974). https://doi.org/10.1007/BF01870184

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870184

Keywords

Navigation