Skip to main content
Log in

State and distribution of potassium and sodium ions in frog skeletal muscle

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A modified method for constructing cation-selective glass membrane microelectrodes is described. The method permits routine fabrication of electrodes with tip diameters less than 1 μ and exposed tip lengths of 2 to 5 μ. These electrodes had tip resistances in the range 107 to 109 ohms and gave stable and reproducible potentials in standard NaCl and KCl solutions. Potentials were unaffected by pH in the range 6 to 8 and satisfactory calibration curves were obtained over the temperature range 15 to 25°C. Pairs of electrodes with different K−Na selectivity coefficients were used to measure K+ and Na+ activities in frog sartorius fibers. In fibers containing normal amounts of these ions, Na+ activitywas much less than would be predicted from chemical analysis of the muscles, assuming that all the apparent muscle Na+ is present in an osmotically active form in the myoplasm. Possible origins of this discrepancy are discussed. Following a 48-hr soak at 5°C in a K-free medium, the apparent Na+ concentration and activity of the fibers both increased and the K+ concentration strongly suggests the existence in normal fibers of at least two intrafiber K+ compartments, both of which exchange with external Na+ but only one of which is detectible by a microelectrode located in the myoplasm. Ca++ appears to exert a strong regulatory effect on Na+−K+ exchange between these compartments and the external medium and on the distribution of intrafiber Na+ and K+ between these compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, J. T., Nastuk, W. L. 1953. An instrument for the production of microelectrodes used in electrophysiology.Rev. Sci. Instr. 24:528

    Google Scholar 

  • Allen, R. D., Hinke, J. A. M. 1971. Na+−Li+ exchange in single muscle fibers of the giant barnacle.Canad. J. Physiol. Pharmacol. 49:862

    Google Scholar 

  • Armstrong, W. McD., Lee, C. O. 1971. Sodium and potassium activities in normal and “sodium-rich” frog skeletal muscle.Science 171:413

    PubMed  Google Scholar 

  • Armstrong, W. McD., Lurie, D., Burt, M. R., High, J. R. 1969. Extracellular volume and ionic content of frog ventricle.Amer. J. Physiol. 217:1230

    Google Scholar 

  • Beaugé, L. A., Sjodin, R. A. 1968. The dual effect of lithium ions on sodium efflux in skeletal muscle.J. Gen. Physiol. 52:408

    PubMed  Google Scholar 

  • Bozler, E. 1965. Osmotic properties of amphibian muscle.J. Gen. Physiol. 49:37

    PubMed  Google Scholar 

  • Caldwell, P. C. 1968. Factors governing movement and distribution of inorganic ions in nerve and muscle.Physiol. Rev. 48:1

    PubMed  Google Scholar 

  • Carey, M. J., Conway, E. J. 1954. Comparison of various media for immersing frog sartorii at room temperature, and evidence for the regional distribution of fiber Na+.J. Physiol. (London) 125:232

    Google Scholar 

  • Carey, M. J., Conway, E. J., Kernan, R. P. 1959. Secretion of sodium ions by the frog's sartorius.J. Physiol. (London) 148:51

    Google Scholar 

  • Chang, D. C., Hazelwood, C. F., Nichols, B. L., Rorschach, H. E. 1972. Spin echo studies on cellular water.Nature 235:170

    PubMed  Google Scholar 

  • Civan, M. M., Shporer, M. 1972.17O Nuclear magnetic resonance spectrum of H2 17O in frog striated muscle.Biophys. J. 12:404

    PubMed  Google Scholar 

  • Conway, E. J. 1957. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle.Physiol. Rev. 37:84

    PubMed  Google Scholar 

  • Cooke, R., Wien, R. 1971. The state of water in muscle tissue as determined by proton nuclear magnetic resonance.Biophys. J. 11:1002

    PubMed  Google Scholar 

  • Cope, F. W. 1967. NMR evidence for complexing of Na+ in muscle, kidney, and brain, and by actomyosin. The relation of cellular complexing of Na+ to water structure and to transport kinetics.J. Gen. Physiol. 50:1353

    PubMed  Google Scholar 

  • Cope, F. W. 1970. Spin-echo nuclear magnetic resonance evidence for complexing of sodium ions in muscle, brain, and kidney.Biophys. J. 10:843

    PubMed  Google Scholar 

  • Cope, F. W. 1972. Unjustified doubts about the nuclear magnetic resonance demonstration of structured water in neural and muscle tissue.Nature 237:215

    Google Scholar 

  • Cross, S. B., Keynes, R. D., Rybova, R. 1965. The coupling of sodium efflux and potassium influx in frog muscle.J. Physiol. (London) 181:865

    Google Scholar 

  • Czeisler, J. L., Fritz, O. G., Swift, T. J. 1970. Direct evidence from nuclear magnetic resonance studies for bound sodium in frog skeletal muscle.Biophys. J. 10:260

    PubMed  Google Scholar 

  • Dee, E., Kernan, R. P. 1963. Energetics of sodium transport inRana pipiens.J. Physiol. (London) 165:550

    Google Scholar 

  • Desmedt, J. E. 1953. Electrical activity and intracellular sodium concentration in frog muscle.J. Physiol. (London) 121:191

    Google Scholar 

  • Dick, D. A. T., Fry, D. J., John, P. N., Rogers, A. W. 1970. Autoradiographic demonstration of inhomogeneous distribution of sodium in single oocytes ofBufo bufo.J. Physiol. (London) 210:305

    Google Scholar 

  • Dydynska, M., Wilkie, D. R. 1963. The osmotic properties of striated muscle fibers in hypertonic solutions.J. Physiol. (London) 169:312

    Google Scholar 

  • Eisenman, G. 1962. Cation-selective glass electrodes and their mode of operation.Biophys. J. 2:259

    PubMed  Google Scholar 

  • Eisenman, G. 1967. Particular properties of cation-selective glass electrodes containing Al2O3.In: Glass Electrodes for Hydrogen and other Cations. G. Eisenman, editor. p. 268. Marcel Dekker, New York

    Google Scholar 

  • Eisenman, G. 1968. An experimental analysis of the origin of the galss electrode potential.Ann. N.Y. Acad. Sci. 148:5

    Google Scholar 

  • Harris, E. J. 1963. Distribution and movement of muscle chloride.J. Physiol. (London) 166:87

    Google Scholar 

  • Hazelwood, C. F., Nichols, B. L., Chamberlain, N. F. 1969. Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle.Nature 222:747

    PubMed  Google Scholar 

  • Hinke, J. A. M. 1959. Glass micro-electrodes for measuring intracellular activities of sodium and potassium.Nature 184:1257

    PubMed  Google Scholar 

  • Hinke, J. A. M. 1970. Solvent water for electrolytes in the muscle fiber of the giant barnacle.J. Gen. Physiol. 56:521

    PubMed  Google Scholar 

  • Hinke, J. A. M., Caillé, J. P., Gayton, D. C. 1973. Distribution and state of monovalent ions in skeletal muscle based on ion electrode, isotope, and diffusion analyses.In: Physiochemical State of Ions and Water in Living Tissues and Model Systems. C. F. Hazelwood, editor.Ann. N.Y. Acad. Sci. 204:274

  • Hinke, J. A. M., McLaughlin, S. G. A. 1967. Release of bound sodium in single muscle fibers.Canad. J. Physiol. Pharmacol. 45:655

    Google Scholar 

  • Hodgkin, A. L., Horowicz, P. 1959. Movements of Na and K in single muscle fibers.J. Physiol. (London) 145:405

    Google Scholar 

  • Huxley, H. E. 1964. Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle.Nature 202:1067

    PubMed  Google Scholar 

  • Johnson, J. A. 1956. Influence of ouabain, strophanthidin, and dihydrostrophanthidin on sodium and potassium transport in frog sartorii.Amer. J. Physiol. 187:328

    PubMed  Google Scholar 

  • Kernan, R. P. 1972. Active transport and ionic concentration gradients in muscle.In: Transport and Accumulation in Biological Systems. E. J. Harris, editor. p. 193. University Park Press, Baltimore

    Google Scholar 

  • Keynes, R. D., Maisel, G. W. 1954. The energy requirement for sodium extrusion from a frog muscle.Proc. Roy. Soc. (London), Ser. B.:142:383

    Google Scholar 

  • Keynes, R. D., Steinhardt, R. A. 1968. The components of the sodium efflux in frog muscle.J. Physiol (London) 198:581

    Google Scholar 

  • Kleinzeller, A., Kostyuk, P. G., Kotyk, A., Lev, A. A. 1969. Determination of intracellular ionic concentrations and activities.In: Laboratory Techniques in Membrane Biology. H. Passow and R. Stämpfli, editors. p. 69. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Kostyuk, P. G., Sorokina, Z. A., Kholodova, Y. D. 1969. Measurement of activity of hydrogen, potassium, and sodium ions in striated muscle fibers and nerve cells.In: Glass Micro-electrodes. M. Lavallée, O. Schanne, and N. C. Hébert, editors. p. 322. John Wiley and Sons, New York

    Google Scholar 

  • Lev, A. A. 1964. Determination of activity and activity coefficients of potassium and sodium ions in frog muscle fibers.Nature 201:1132

    PubMed  Google Scholar 

  • Lev, A. A. 1969. Electrochemical properties of “incompletely sealed” cation sensitive microelectrodes.In: Glass Microelectrodes. M. Lavallée, O. Schanne, and N. C. Hébert, editors. p. 76. John Wiley and Sons, New York

    Google Scholar 

  • Lewis, M. S., Saroff, H. A. 1957. The binding of ions to the muscle proteins. Measurements on the binding of potassium and sodium ions to Myosin A.J. Amer. Chem. Soc. 79:2112

    Google Scholar 

  • Ling, G. N. 1962. A Physical Theory of the Living State. Blaisdell, New York

    Google Scholar 

  • Ling, G. N., Cope, F. W. 1969. Potassium ion: Is the bulk of intracellular potassium ions adsorbed.Science 163:1335

    PubMed  Google Scholar 

  • Martinez, D., Silvidi, A. A., Stokes, R. M. 1969. Nuclear magnetic resonance studies of sodium ions in isolated frog muscle and liver.Biophys. J. 9:1256

    PubMed  Google Scholar 

  • McLaughlin, S. G. A., Hinke, J. A. M. 1966. Sodium and water binding in single striated muscle fibers of the giant barnacle.Canad. J. Physiol. Pharmacol. 44:837

    Google Scholar 

  • McLaughlin, S. G. A., Hinke, J. A. M. 1968. Optical density changes of single muscle fibers in sodium free, solution.Canad. J. Physiol. Pharmacol. 46:247

    Google Scholar 

  • Nicolsky, B. P. 1937. Theory of the glass electrode.Zh. Fiz. Khim. 10:495 (In Russian)

    Google Scholar 

  • Outhred, R. K., George, E. P. 1973. Water and ions in muscles and model systems.Biophys. J. 13:97

    PubMed  Google Scholar 

  • Reuben, J. P., Lopez, E., Brandt, P. W., Grundfest, H. 1963. Muscle: Volume changes in isolated fibers.Science 142:246

    PubMed  Google Scholar 

  • Riordan, J. R., Manery, J. F., Dryden, E. E., Stile, J. S. 1972. Influence of ethacrynic acid on muscle surface enzymes and of ethacrynic acid and ouabain on Na, K, and H2O in frog muscle.Canad. J. Physiol. Pharmacol. 50:432

    Google Scholar 

  • Robinson, R. A., Stokes, R. H. 1965. Electrolyte Solutions. Butterworths, London

    Google Scholar 

  • Shaw, J. 1958. Further studies on ionic regulation in the muscle fibers ofCarcinus maenas.J. Exp. Biol. 35:902

    Google Scholar 

  • Shporer, M., Civan, M. M. 1972. Nuclear magnetic resonance of sodium 23 linoleatewater. Basis for an alternative interpretation of sodium 23 spectra within cells.Biophys. J. 12:114

    PubMed  Google Scholar 

  • Simon, S. E., Shaw, F. H., Bennett, S., Muller, M. 1957. The relationship between sodium, potassium, and chloride in amphibian muscle.J. Gen. Physiol. 40:753

    PubMed  Google Scholar 

  • Sjodin, R. A., Beaugé, L. A. 1973. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.J. Gen. Physiol. 61:222

    PubMed  Google Scholar 

  • Sorokina, Z. A., Kholodova, Y. D. 1970. The content of inorganic ions in subcellular fractions of skeletal muscles.Akad. Nauk SSSR, Biofisica 15:844

    Google Scholar 

  • Steinbach, H. B. 1954. The regulation of sodium and potassium in muscle fibers.Symp. Soc. Exp. Biol. 8:438

    Google Scholar 

  • Tasaki, I., Polley, E. H., Orrego, F. 1954. Action potentials from individual elements in cat geniculate and striate cortex.J. Neurophysiol. 17:454

    PubMed  Google Scholar 

  • White, J. F., Armstrong, W. McD. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine.Amer. J. Physiol. 221:194

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.O., Armstrong, W.D. State and distribution of potassium and sodium ions in frog skeletal muscle. J. Membrain Biol. 15, 331–362 (1974). https://doi.org/10.1007/BF01870094

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870094

Keywords

Navigation