Skip to main content
Log in

Na+-dependent ionophore as part of the small polypeptide of the (Na++K+)-ATPase from eel electroplax membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The (Na++K+)-ATPase from eel electroplax membranes is resolved into two polypeptides by means of sodium dodecyl sulfate (SDS) preparative gel electrophoresis. From the literature, the larger polypeptide has been known to have a molecular weight in the range of 85,000 to 135,000, while the molecular weight of the smaller polypeptide is known to be between 40,000 and 60,000. When the two polypeptides are combined with a large/small molar ratio of 1∶2, a very Na+-dependent voltage-in-dependent ionophoric activity is observed. The Na+-specificity is manifested as a near absolute requirement for Na+ in order for the two polypeptides to cause an increase in conductance. Further work with tryptic digests of the two polypeptides suggests that the Na+-dependent ionophoric activity is associated with the smaller polypeptide of (Na++K+)-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, R. W., Fahn, S., Koval, G. J. 1963. The role of sodium ions in the activation ofElectrophorus electric organ adenosine triphosphatase.Proc. Nat. Acad. Sci. 50:474

    PubMed  Google Scholar 

  • Albers, R. W., Shamoo, A. E., Koval, G. J., Myers, M. 1973. A soluble (Na++K+)-ATPase and an associated Na+-ionophore fromElectrophorus electric organ.Ninth Int. Congr. Biochem., Stockholm, Sweden, July 1–7

  • Blumenthal, R., Shamoo, A. E. 1974. Ionophoric material derived from eel membrane preparations. II. Electrical characteristics.J. Membrane Biol. 19:141

    Google Scholar 

  • Collins, R. C., Albers, R. W. 1972. The phosphoryl acceptor protein of Na−K-ATPase from various tissues.J. Neurochem. 19:1209

    PubMed  Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581

    PubMed  Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2(2):259

    PubMed  Google Scholar 

  • Eisenman, G. 1965. The electrochemistry of cation-sensitive glass electrodes.Advanc. Analyt. Chem. Inst. 4:213

    Google Scholar 

  • Eisenman, G., Krasne, S. 1973. The selectivity of carrier antibiotics for substituted ammonium ions.Biophys. J. 13:244a

    Google Scholar 

  • Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599

    PubMed  Google Scholar 

  • Hokin, L. E., Dahl, J. L., Deupree, J. D., Dixon, J. F., Perdue, J. F. 1973. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland ofSqualus acanthias.J. Biol. Chem. 248:2593

    PubMed  Google Scholar 

  • Jain, M. K., Mehl, L. E., Cordes, E. H. 1973. Incorporation of eel electroplax acetylcholinesterase into black lipid membranes. A possible model for the cholinergic receptor.Biochem. Biophys. Res. Commun. 51:192

    PubMed  Google Scholar 

  • Kyte, J. 1971a. Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla.J. Biol. Chem. 246:4157

    PubMed  Google Scholar 

  • Kyte, J. 1971b. Phosphorylation of a purified (Na++K+)-adenosine triphosphatase.Biochem. Biophys. Res. Commun. 43:1259

    PubMed  Google Scholar 

  • Kyte, J. 1972. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase.J. Biol. Chem. 247:7642

    PubMed  Google Scholar 

  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680

    PubMed  Google Scholar 

  • Sachs, G., Spenney, J. G., Saccomani, G., Goodall, M. C. 1974. Characterization of gastric mucosal membranes. VI. The presence of channel-forming substances.Biochim. Biophys. Acta 332:233

    Google Scholar 

  • Shamoo, A. E., Albers, R. W. 1973a. Na+-selective ionophoric material derived from electric organ and kidney membranes.Proc. Nat. Acad. Sci. 70:1191

    PubMed  Google Scholar 

  • Shamoo, A. E., Albers, R. W. 1973b. Isolation of a Na-specific ionophore from kidney and electric organ membranes.Biophys. Soc. J. 13:16a

    Google Scholar 

  • Shamoo, A. E., Myers, M., Albers, R. W. 1973. Partial purification of peptidic Na+-ionophore from a (Na++K+)-ATPase preparation.Fed. Proc. 32:258 (abs.)

    Google Scholar 

  • Shamoo, A. E., Myers, M., Blumenthal, R., Albers, R. W. 1974. Ionophoric material derived from eel membrane preparation. I. Chemical characteristics.J. Membrane Biol. 19:129

    Google Scholar 

  • Siegel, G. J., Albers, R. W. 1970. Nucleoside triphosphate phosphohydrolases.In: Handbook of Neurochemistry. A. Lajtha, editor. Vol. 4, p. 13. Plenum Press, New York

    Google Scholar 

  • Uesugi, S., Kahlenberg, A., Medzihradsky, F., Hokin, L. 1969. Studies on the characterization of the sodium-potassium transport adenosine-triphosphatase. IV. Properties of a Lubrol solubilized beef brain microsomal enzyme.Arch. Biochem. Biophys. 130:156

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was initiated while the authors were at the Laboratory of Biophysics at the National Institutes of Health, Bethesda, Maryland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamoo, A.E., Myers, M. Na+-dependent ionophore as part of the small polypeptide of the (Na++K+)-ATPase from eel electroplax membrane. J. Membrain Biol. 19, 163–178 (1974). https://doi.org/10.1007/BF01869976

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869976

Keywords

Navigation