Skip to main content
Log in

Molecular and kinetic parameters of sugar transport across the frog choroid plexus

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The nature of sugar transport across the “blood-cerebrospinal fluid barrier” has been investigated using anin vitro preparation of the frog posterior choroid plexus. The permeability of 41 sugars and related compounds was measured by the rapid osmotic procedure described previously. Sugar permeation was found to be stereospecific, inhibited by 1,5-difluoro-2,4-dinitrobenzene, insensitive to anoxia, and independent of the external alkali cation composition. In addition, the transport of a sugar was inhibited by structural analogues. Transport occurred equally well from the ventricular or serosal surface of the tissue, and the rate of transport could be described formally by Michaelis-Menten kinetics. The results were analyzed in terms of the conformation of the sugars in aqueous solution. Sugars which were transported have the d-glucose chair conformation. There is a good correlation between the affinity of the sugar for the transport system and the number of hydroxyl groups attached to the equatorial plane of the ring; d-glucose with five equatorial hydroxyl groups has the greatest affinity. It is concluded that sugar transport across the choroid plexus occurs by facilitated diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angyal, S. J., Pickles, V. A. 1967. Equilibria between furanoses and pyranoses.Carbohyd. Res. 4:269.

    Google Scholar 

  • Barker, G. R., Shaw, D. F. 1959. Ribose and its derivatives. Part VIII. The ring structure and periodate oxidation to ribose and related polyols.J. Chem. Soc. 584.

  • Bowyer, F., Widdas, W. F. 1958. The action of inhibitors on the facilitated hexose transfer system in erythrocytes.J. Physiol. 141:219.

    Google Scholar 

  • Bradbury, M. W. B., Davson, H. 1964. The transport of urea, creatinine and certain monosaccharides between blood and fluid perfusing the cerebral ventricular system of rabbits.J. Physiol. 170:195.

    Google Scholar 

  • Brewster, J. H. 1959. The optical activity of saturated cyclic compounds.J. Amer. Chem. Soc. 81:5483.

    Google Scholar 

  • Capon, B., Overend, W. G. 1960. Constitution and physiochemical properties of carbodydrates.Advanc. Carbohyd. Chem. 15:11.

    Google Scholar 

  • Crane, R. K. 1965. Na+-dependent transport in the intestine and other animal tissues.Fed. Proc. 24:1000.

    Google Scholar 

  • Csáky, T. Z., Rigor, B. M. 1965. A concentrative mechanism for sugars in the choroid plexus.Life Sci. 3:931.

    Google Scholar 

  • Danielli, J. F. 1954. Morphological and molecular aspects of active transport.In: Symp. Soc. Exp. Biol. VIII: Active Transport and Secretion. The University Press, Cambridge.

    Google Scholar 

  • Deulofeu, V. 1932. The molecular weight of 1-erythrose.J. Chem. Soc. 2973.

  • Diamond, J. M., Wright, E. M. 1969. Biological membranes: The physical basis of ion and non-electrolyte selectivity.Ann. Rev. Physiol. 31:581.

    Google Scholar 

  • Dixon, M., Webb, E. C. 1964. Enzymes. Academic Press, New York.

    Google Scholar 

  • Dobson, J. G., Kidder, G. W. 1968. Edge damage effect inin vitro frog skin preparations.Amer. J. Physiol. 214:719.

    Google Scholar 

  • Eisenman, G. 1968. Ion permeation of cell membranes and its models.Fed. Proc. 27:1249.

    Google Scholar 

  • Eliel, E. L., Allinger, N. L., Angyal, S. J., Morrison, G. A. 1965. Conformational Analysis. Interscience, New York.

    Google Scholar 

  • Fishman, R. A. 1964. Carrier transport of glucose between blood and cerebrospinal fluid.Amer. J. Physiol. 206:836.

    Google Scholar 

  • Hordvik, A. 1961. Refinement of the crystal structure of β-arabinose.Acta Chem. Scand. 15:16.

    Google Scholar 

  • Hunter, A., Downs, C. E. 1945. The inhibition of arginase by amino acids.J. Biol. Chem. 157:427.

    Google Scholar 

  • Karabinos, J. V. 1952. Psicose, sorbose and tagatose.Advanc. Carbohyd. Chem. 7:99.

    Google Scholar 

  • Katchalsky, A., Kedem, O. 1962. Thermodynamics of flow processes in biological systems.Biophys. J. 2 pt.2:53.

    Google Scholar 

  • Kelly, R. B. 1957. A relationship between the conformations of cyclohexane derivates and their physical properties.Canad. J. Chem. 35:149.

    Google Scholar 

  • Koshland, D. E. 1959. Mechanisms of transfer enzymes.In: The Enzymes, vol. 1. P. D. Boyer, H. Lardy, and K. Myrbäck, editors. p. 305. Academic Press, New York.

    Google Scholar 

  • LeFevre, P. G. 1961. Sugar transport in the red blood cell: Structure-activity relationships in substrates and antagonists.Pharmacol. Rev. 13:39.

    Google Scholar 

  • — Marshall, J. K. 1958. Conformational specificity in a biological transport system.Amer. J. Physiol. 194:333.

    Google Scholar 

  • Lineweaver, H., Burk, D. 1934. The determination of enzyme dissociation constants.J. Amer. Chem. Soc. 56:658.

    Google Scholar 

  • McDonald, T. R. R., Beevers, C. A. 1952. The crystal and molecular structure of α-glucose.Acta Cryst. 5:654.

    Google Scholar 

  • Pigman, W. W. (Ed.) 1957. The Carbohydrates: Chemistry, Biochemistry, Physiology. Academic Press, New York.

    Google Scholar 

  • — Isbell, H. S. 1968. Mutarotation of sugars in solution: Part 1, History, basic kinetics and composition of sugar solutions.Advanc. Carbohyd. Chem. 23:11.

    Google Scholar 

  • Reeves, R. E. 1949. Cuprammonium-glycoside complexes. III. The conformation of the d-glucopyranoside ring in solution.J. Amer. Chem. Soc. 71:215.

    Google Scholar 

  • — 1951. Cuprammonium-glycoside complexes.Advanc. Carbohyd. Chem. 6:107.

    Google Scholar 

  • Sen, A. K., Widdas, W. F. 1962. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit.J. Physiol. 160:392.

    Google Scholar 

  • Stein, W. D. 1967. Movement of molecules across cell membranes. Vol. 6 of Theoretical and Experimental Biology. Academic Press, New York.

    Google Scholar 

  • Sweeley, C. C., Bentley, R., Makita, M., Wells, W. W. 1963. Gas-liquid chromatography of trimethylsilyl derivates of sugars and related substances.J. Amer. Chem. Soc. 85:2497.

    Google Scholar 

  • Tipson, R. S., Isbell, H. S. 1960. Conformation of the pyranoid sugars. II. Infrared absorption spectra of some aldopyranosides.J. Res. Nat. Bur. Stand. 64A:239.

    Google Scholar 

  • Verstraeten, L. M. J. 1967. d-fructose and its derivates.Advanc. Carbohyd. Chem. 22:229.

    Google Scholar 

  • Welch, K. 1967. The secretion of the cerebrospinal fluid byLamina epitheliais. Monog. Surg. Sci.4:155.

    Google Scholar 

  • Whiffen, D. H. 1956. Optical rotation and geometrical structure.Chem. & Ind. (Rev.) 964.

  • Wright, E. M., Diamond, J. M. 1969. An electrical method of measuring nonelectrolyte permeability.Proc. Roy. Soc. (London) B 172:203.

    Google Scholar 

  • — Prather, J. W. 1970. The permeability of the frog choroid plexus to nonelectrolytes.J. Membrane Biol. 2:127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prather, J.W., Wright, E.M. Molecular and kinetic parameters of sugar transport across the frog choroid plexus. J. Membrain Biol. 2, 150–172 (1970). https://doi.org/10.1007/BF01869857

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869857

Keywords

Navigation