Skip to main content
Log in

Altered patterns ofN-linked glycosylation of theTorpedo acetylcholine receptor expressed inXenopus oocytes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The nicotinic acetylcholine receptor (AChR) fromTorpedo electroplax is an oligomeric transmembrane glycoprotein made up of four highly homologous subunits in a stoichiometry of α2βγδ. The role ofN-linked glycosylation of the AChR has been studied in several cell lines and these studies have suggested that the addition of carbohydrate may be important for receptor expression. WhileXenopus oocytes have proven to be an invaluable tool for studying the AChR, little is known aboutN-linked glycosylation of the oocyte-expressed receptor. The present report demonstrates that the oocyte-expressed AChR is glycosylated and contains the same number of oligosaccharide residues per subunit as the native receptor. However, unlike the nativeTorpedo receptor which contains both high mannose and complex oligosaccharides, the oocyte-expressed AChR contains only high mannose oligosaccharide modifications. However, as has been well documented, theTorpedo AChR expressed in oocytes is fully functional, demonstrating that the precise nature of the oligosaccharide modification is not critical for receptor function.

The role of the oligosaccharide component of the AChR in receptor function was examined using tunicamycin (TM) to inhibitN-linked protein glycosylation. TM treatment resulted in a 70–80% inhibition of AChR expression in oocytes. Functional, unglycosylated receptors were not expressed; receptors expressed in TM-treated oocytes were functional wild-type, glycosylated AChR, formed only during the initial 12 hr of TM exposure. These data suggest that while glycosylation of the oocyte-expressedTorpedo AChR is required for assembly of subunits into a functional receptor, as has been demonstrated in other cells, oocyte modification of normalTorpedo glycosylation patterns does not affect receptor function or assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breitfeld, P.P., Rup, D., Schwartz, A.L. 1984. Influence of theN-linked oligosaccharides on the biosynthesis, intracellular routing, and function of the human asialoglycoprotein receptor.J. Biol. Chem. 259:10414–10421

    Google Scholar 

  • Buller, A.L., White, M.M. 1988. Control ofTorpedo acetylcholine receptor biosynthesis inXenopus oocytes.Proc. Natl. Acad. Sci. USA 85:8717–8721

    Google Scholar 

  • Claudio, T., Balivet, M., Patrick, J., Heinemann, S. 1983. Nucleotide and deduced amino acid sequences ofTorpedo acetylcholine receptor γ subunit.Proc. Natl. Acad. Sci. USA 80:1111–1115

    Google Scholar 

  • Claudio, T., Raftery, M.A. 1977. Immunological comparison of acetylcholine receptors and their subunits from species of electric ray.Arch. Biochem. Biophys. 181:484–489

    Google Scholar 

  • Colman, A. 1984. Translation of eukaryotic messenger RNA inXenopus oocytes.In: Transcription and Translation: A Practical Approach. B.D. Hames and S.J. Higgins, editors. pp. 271–302. IRL, Oxford

    Google Scholar 

  • Devreotes, P. N., Fambrough, D.M. 1975. Acetylcholine receptor turnover in membranes of developing muscle fibers.J. Cell Biol. 65:335–358

    Google Scholar 

  • Elder, J.H., Alexander, S. 1982.endo-β-N-Acetylglucosaminidase F: Endoglycosidase fromFlavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins.Proc. Natl. Acad. Sci. USA 79:4540–4544

    Google Scholar 

  • Froehner, S.C., Rafto, S. 1979. Comparison of the subunits ofTorpedo californica acetylcholine receptor by peptide mapping.Biochemistry 18:301–307

    Google Scholar 

  • George, S.T., Ruoho, A.E., Malbon, C.C. 1986.N-Glycosylation in expression and function of β-adrenergic receptors.J. Biol. Chem. 261:16559–16564

    Google Scholar 

  • Gu, Y., Hall, Z.W. 1988. Characterization of acetylcholine receptor subunits in developing and in denervated mammalian muscle.J. Biol. Chem. 263:12878–12885

    Google Scholar 

  • Gurdon, J.B., Lane, C.D., Woodland, H.R., Maibaix, G. 1971. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells.Nature (London) 233:177–182

    Google Scholar 

  • Khorana, H.G., Knox, B.E., Nasi, E., Swanson, R., Thompson, D.A. 1988. Expression of a bovine rhodopsin gene inXenopus oocytes: Demonstration of light-dependent ionic currents.Proc. Natl. Acad. Sci. USA 85:7917–7921

    Google Scholar 

  • Kornfeld, R., Kornfeld, S. 1985. Assembly of asparagine-linked oligosaccharides.Annu. Rev. Biochem. 54:631–664

    Google Scholar 

  • Krieg, P.A., Melton, D.A. 1984. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNA.Nucleic Acids Res. 12:7057–7070

    Google Scholar 

  • Kuo, S.-C., Lampen, J.O. 1974. Tunicamycin—An inhibitor of yeast glycoprotein synthesis.Biochem. Biophys. Res. Commun. 58:287–295

    Google Scholar 

  • Kusano, K., Miledi, R., Stinnakre, J. 1982. Cholinergic and catecholiminergic receptors in theXenopus oocyte membrane.J. Physiol. (London) 328:143–170

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  • Lane, C.D., 1983. The fate of genes, messengers, and proteins introduced intoXenopus oocytes:In: Current Topics in Developmental Biology. A.A. Moscona and A. Monroy, editors. Vol. 18, pp. 89–116. Academic, New York

    Google Scholar 

  • Lindstrom, J., Merlie, J., Yogeeswaran, G. 1979. Biochemical properties of acetylcholine receptor subunits fromTorpedo californica.Biochemistry 18:4465–4470

    Google Scholar 

  • Machamer, C.E., Florkiewicz, R.Z., Rose, J.K. 1985. A single-N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G-protein to the cell surface.Mol. Cell Biol. 5:3074–3083

    Google Scholar 

  • MacKinnon, R., Reinhart, P., White, M.M. 1988. Charybdotoxin block ofShaker K+ channels suggests that functionally different K+ channels may share common structural features.Neuron 1:997–1001

    Google Scholar 

  • McCarthy, M.P., Earnest, J.P., Young, E.F., Choe, S., Stroud, R.M. 1986. The molecular neurobiology of the acetylcholine receptor.Annu. Rev. Neurosci. 9:383–413

    Google Scholar 

  • Merlie, J.P., Sebbane, R., Tzartos, S., Lindstrom, J. 1982. Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells.J. Biol. Chem. 257:2694–2701

    Google Scholar 

  • Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., Numa, S. 1985. Location of functional regions of acetylcholine receptor α-subunit by site-directed mutagenesis.Nature (London) 313:364–369

    Google Scholar 

  • Morrison, T.G., McQuain, C.C., Simpson, D. 1978. Assembly of viral membranes: Maturation of the vesicular stomatitis virus glycoprotein in the presence of tunicamycin.J. Virol. 28:368–374

    Google Scholar 

  • Mosckovitz, R., Gershoni, J.M. 1988. Three possible disulfides in the acetylcholine receptor α-subunit.J. Biol. Chem. 263:1017–1022

    Google Scholar 

  • Mous, J.M., Peeters, B.L., Heyns, W.J., Rombauts, W.A. 1982. Assembly, glycosylation, and secretion of the oligomeric rat prostatic binding protein inXenopus oocytes.J. Biol. Chem. 257:11822–11828

    Google Scholar 

  • Mous, J., Peeters, B., Rombauts, W. 1980. Synthesis and core glycosylation of the α subunit of human chorionic gonadotropin inXenopus oocytes.FEBS Lett 122:105–108

    Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., Numa, S. 1982. Primary structure of α-subunit precursor ofTorpedo californica acetylcholine receptor deduced from cDNA sequence.Nature (London) 299:793–797

    Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosata, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., Numa, S. 1983. Primary structures of β- and δ-subunit precursors ofTorpedo californica acetylcholine receptor deduced cDNA sequences.Nature (London) 301:251–255

    Google Scholar 

  • Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y., Hayashi, K. 1986. Carbohydrate structures of acetylcholine receptor fromTorpedo californica and distribution of oligosaccharides among the subunits.Eur. J. Biochim. 157:233–242

    Google Scholar 

  • Olden, K., Parent, J.B., White, S.J. 1982. Carbohydrate moieties of glycoproteins: A re-evaluation of their function.Biochim. Biophys. Acta 650:209–232

    Google Scholar 

  • Patrick, J., McMillan, J., Wolfson, H., O'Brien, J.C. 1977. Acetylcholine receptor metabolism in a nonfusing muscle cell line.J. Biol. Chem. 252:2143–2153

    Google Scholar 

  • Peacock, S.L., Bates, M.P., Russell, D.W., Brown, M.S., Goldstein, J.L. 1988. Human low density lipoprotein receptor expressed inXenopus oocytes.J. Biol. Chem. 263:7838–7845

    Google Scholar 

  • Popot, J.-L., Changeux, J.P. 1984. Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein.Physiol. Rev. 64:1162–1239

    Google Scholar 

  • Prives, J., Bar-Sagi, D. 1983. Effect of tunicamycin, an inhibitor of protein glycosylation, on the biological properties of acetylcholine receptor in cultured muscle cells.J. Biol. Chem. 258:1775–1780

    Google Scholar 

  • Prives, J.M., Olden, K. 1980. Carbohydrate requirement for expression and stability of acetylcholine receptor on the surface of embryonic muscle cells in culture.Proc. Natl. Acad. Sci. USA 77:5263–5267

    Google Scholar 

  • Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kuraskai, M., Fukuda, K., Numa, S. 1985. Role of acetylcholine receptor subunits in gating of the channel.Nature (London) 318:538–543

    Google Scholar 

  • Smith, M.M., Schlesinger, S., Lindstrom, J., Merlie, J.P. 1986. The effects of inhibition oligosaccharide trimming by 1-deoxynojirimycin on the nicotinic acetylcholine receptor.J. Biol. Chem. 261:14825–14832

    Google Scholar 

  • Soreq, H. 1985. The biosynthesis of biologically active proteins in mRNA-microinjectedXenopus oocytes.CRC Crit. Rev. Biochem. 18:199–238

    Google Scholar 

  • Tarentino, A.L., Trimble, R.B., Maley, F. 1978.Endo-β-N-acetylglucosaminidase fromStreptomyces plicatus.Methods Enzymol. 50:574–580

    Google Scholar 

  • Thornhill, W.B., Levinson, S.R. 1987. Biosynthesis of electroplax sodium channels inelectrophorus electrocytes andXenopus oocytes.Biochemistry 26:4381–4388

    Google Scholar 

  • Tkacz, J.S., Lampen, J.O. 1975. Tunicamycin inhibition of polyisoprenyl-N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes.Biochem. Biophys. Res. Commun. 65:248–257

    Google Scholar 

  • Vandlen, R.L., Wu, C.-S., Eisenach, J.C., Raftery, M.A. 1979. Studies of the composition of the purifiedTorpedo californica acetylcholine receptor and its subunits.Biochemistry 18:1845–1854

    Google Scholar 

  • Weintraub, B.D., Stannard, B.S., Linnekin, D., Marshall, M. 1980. Relationship of glycosylation tode-novo thyroid-stimulating hormone biosynthesis and secretion by mouse pituitary tumor cells.J. Biol. Chem. 255:5715–5723

    Google Scholar 

  • White, M.M., Mayne, K.M., Lester, H.A., Davidson, N. 1985. Mouse-Torpedo hybrid acetylcholine receptors: Functional homology does not equal sequence homology.Proc. Natl. Acad. Sci. USA 82:4852–4856

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buller, A.L., White, M.M. Altered patterns ofN-linked glycosylation of theTorpedo acetylcholine receptor expressed inXenopus oocytes. J. Membrain Biol. 115, 179–189 (1990). https://doi.org/10.1007/BF01869456

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869456

Key Words

Navigation