Skip to main content
Log in

Charge pulse studies of transport phenomena in bilayer membranes

II. Detailed theory of steady-state behavior and application to valinomycin-mediated potassium transport

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The charge-pulse technique is applied to a study of valinomycin-mediated potassium transport across glycerol monooleate (GMO) bilayers. The theory, based on the Läuger-Stark model, is developed for the steady-state domain. The voltage dependences of the surface complexation reactions are also considered. The analysis of the data yields the following values for the rate constants:

$$\begin{array}{*{20}c} {k'_R = 2.6 \times 10^8 \times \exp \left[ {0.045\frac{F}{{RT}}V} \right]cm^3 moles^{ - 1} \sec ^{ - 1} ,} \\ {k'_D = 2.6 \times 10^5 \times \exp \left[ {0.045\frac{F}{{RT}}V} \right]\sec ^{ - 1} , k_s = 2.6 \times 10^4 \sec ^{ - 1} and k_{MS} /k_D > 4} \\\end{array}$$

With the exception of this last ratio, all the values agree well with previously published data. The implication of the exponential term, 0.045, is that the plane of reaction for the surface complexation actually occurs a small distance within the membrane dielectric. If one presumes that the reaction plane is about half way between the plane of adsorbed complex and the membrane-water interface, one deduces that the complex “feels” only about 80% of the applied voltage across the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O.S., Fuchs, M. 1975. Potential energy barriers to ion transport within lipid bilayers—studies with tetraphenylborate.Biophys. J. 15:795

    Article  PubMed  CAS  Google Scholar 

  • Bamberg, E., Benz, R. 1976. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electric field on gramicidin A channel formation.Biochim. Biophys. Acta 426:370

    Google Scholar 

  • Benz, R., Frohlich, O., Läuger, P., Montal, M. 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers.Biochim. Biophys. Acta 394:323

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., Läuger, P. 1976. Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique.J. Membrane Biol. 27:171

    Article  CAS  Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339

    Article  CAS  Google Scholar 

  • Eisenman, G., Krasne, S., Ciani, S. 1975. The kinetic and equilibrium components of selective ionic permeability mediated by nactin- and valinomycin-type carriers having systematically varied degrees of methylation.Ann. N.Y. Acad. Sci. 264:34

    Article  PubMed  CAS  Google Scholar 

  • Feldberg, S.W., Kissel, G. 1975. Charge pulse studies of transport phenomena in bilayer membranes I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers.J. Membrane Biol. 20:269

    Article  CAS  Google Scholar 

  • Hladky, S.B. 1972. The steady state theory of carrier transport of ions.J. Membrane Biol. 10:67

    Article  CAS  Google Scholar 

  • Hladky, S.B. 1973. The effect of stirring on the flux of carrier into black lipid membranes.Biochim. Biophys. Acta 307:261

    Article  PubMed  CAS  Google Scholar 

  • Hladky, S.B. 1974. The energy barriers to ion transport by nonactin across thin lipid membranes.Biochim. Biophys. Acta 352:71

    Article  PubMed  CAS  Google Scholar 

  • Hladky, S.B. 1975. Steady state ion transport by nonactin and trinactin.Biochim. Biophys. Acta 375:350

    Article  PubMed  CAS  Google Scholar 

  • Laprade, R., Ciani, S.M., Eisenman, G., Szabo, G. 1974. The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpretation.In: Membranes, A Series of Advances. G. Eisenman, editor. Vol. 3. Marcel Dekker, New York

    Google Scholar 

  • Läuger, P., Stark, G. 1970. Kinetics of carrier-mediated ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 211:458

    Article  PubMed  Google Scholar 

  • Markin, V.S., Grigor'ev, P.A., Yermishkin, L.N. 1971. Forward passage of ions across lipid membranes—I. Mathematical model.Biofozika 16:1011

    CAS  Google Scholar 

  • Requena, J., Haydon, D.A., Hladky, S.B. 1975. Lenses and the compression of black lipid membranes by an electric field.Biophys. J. 15:77

    Article  CAS  Google Scholar 

  • Stark, G., Benz, R. 1971. The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin. Experimental studies to a previously proposed model.J. Membrane Biol. 5:133

    Article  CAS  Google Scholar 

  • Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.Biophys. J. 11:981

    Article  PubMed  CAS  Google Scholar 

  • Ting-Beall, H.P., Tosteson, M.T., Gisin, B.F., Tosteson, D.C. 1974. Effect of peptide PV on the ionic permeability of lipid bilayer membranes.J. Gen. Phys. 63:492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldberg, S.W., Nakadomari, H. Charge pulse studies of transport phenomena in bilayer membranes. J. Membrain Biol. 31, 81–102 (1977). https://doi.org/10.1007/BF01869400

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869400

Keywords

Navigation