Skip to main content
Log in

Identification of electrophysiologically distinct subpopulations of rat taste cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The gustatory sensory system provides animals with a rapid chemical analysis of a potential food substance providing information necessary to facilitate ingestion or rejection of the food. The process of gustatory transduction is initiated in the taste cells in the lingual epithelium. However, due to the small size, scarcity of the cells and their location, embedded in a keratinized squamous epithelium, it has been difficult to study the primary events in the transduction process. Recently, we have developed a preparation of dissociated rat taste cells that permits studies of the taste transduction process in single isolated cells. We have now investigated the electrophysiological properties of the rat taste cells using the patch-clamp technique. We have identified two populations of cells within the taste bud: one expressing a voltage-dependent potassium current and the second containing both voltage-dependent sodium and potassium currents. The potassium current in both cell groups is blocked by external TEA, Ba2+, and quinine. Two types of K+ channels have been identified: a 90-pS delayed rectifier K+ channel and a “maxi” calcium-activated K+ channel. The sodium current is blocked by TTX, but not by amiloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akabas, M.H., Dodd, J., Al-Awqati, Q. 1987. Mechanism of bitter taste transduction by rat taste cells.J. Cell Biol. 105:93a

    Google Scholar 

  • Akabas, M.H., Dodd, J., Al-Awqati, Q. 1988. A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells.Science 242:1047–1050

    Google Scholar 

  • Akisaka, T., Oda, M. 1978. Taste buds in the vallate papillae of the rat studied with freeze-fracture preparation.Arch. Histol. Jpn. 41:87–98

    Google Scholar 

  • Avenet, P., Hofmann, F., Lindemann, B. 1988. Transduction in taste receptor cells requires cAMP-dependent protein kinase.Nature (London) 331:351–354

    Google Scholar 

  • Avenet, P., Lindemann, B. 1987. Patch-clamp study of isolated taste receptor cells of the frog.J. Membrane Biol. 97:223–240

    Google Scholar 

  • Avenet, P., Lindemann, B. 1988. Amiloride-blockable sodium currents in isolated taste receptor cells.J. Membrane Biol. 105:245–255

    Google Scholar 

  • Biedler, L.M., Smallman, R.L. 1965. Renewal of cells within taste buds.J. Cell Biol. 27:263–272

    Google Scholar 

  • Brand, J.G., Bryant, B.P., Cagan, R.H., Kalinoski, D.L. 1987. Biochemical studies of taste sensation: XIII. Enantiomeric specificity of alanine taste receptor sites in catfish,Ictalurus punctatus. Brain Res. 416:119–128

    Google Scholar 

  • Brand, J.G., Teeter, J.H., Silver, W.L. 1985. Inhibition by amiloride of chorda tympani responses evoked by monovalent salts.Brain Res. 334:207–214

    Google Scholar 

  • Cagan, R.H., Boyle, A.G. 1984. Biochemical studies of taste sensation: XI. Isolation, characterization and taste ligand binding activity of plasma membranes from catfish taste tissue.Biochim. Biophys. Acta 799:230–237

    Google Scholar 

  • Caprio, J., Byrd, R. 1984. Electrophysiological evidence for acidic, basic and neutral amino acid olfactory receptor sites in the catfish.J. Gen. Physiol. 84:403–422

    Google Scholar 

  • Delay, R.J., Kinnamon, J.C., Roper, S.D. 1986. Ultrastructure of mouse vallate taste buds: II. Cell types and cell lineage.J. Comp. Neurol. 253:242–252

    Google Scholar 

  • DeSimone, J.A., Ferrell, F. 1985. Analysis of amiloride inhibition of chorda tympani taste response of rats to NaCl.Am. J. Physiol. 249:R52-R61

    Google Scholar 

  • Farbman, A.I. 1965. Fine structure of the taste bud.J. Ultrastruct. Res. 12:328–350

    Google Scholar 

  • Frank, M.E. 1975. Response patterns of the rat glossopharyngeal taste neurons.In: Olfaction and Taste V. D.A. Denton and J.P. Coghlan, editors. pp. 59–64. Academic, New York

    Google Scholar 

  • Frank, M.E., Contreras, R.J., Hettinger, T.P. 1983. Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat.J. Neurosci. 50:941–960

    Google Scholar 

  • Garty, H., Edelman, I.S. 1983. Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder.J. Gen. Physiol. 81:785–803

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Google Scholar 

  • Heck, G.L., Mierson, S., DeSimone, J.A. 1984. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway.Science 223:403–405

    Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Holland, V.F., Zampighi, G.A., Simon, S.A. 1989. Morphology of fungiform papillae in canine lingual epithelium: Location of intercellular junctions in the epithelium.J. Comp. Neurol. 279:13–27

    Google Scholar 

  • Hwang, P.M., Verma, A., Bredt, D.S., Verma, D., Snyder, S.H. 1989. Evidence for INS(1,4,5)P3 as a second messenger in rat taste receptor cell signal transduction.Soc. Neurosci. Abstr. 15:752

    Google Scholar 

  • Jakinovich, W., Jr., Sugarman, D. 1988. Sugar taste reception in mammals.Chem. Senses 13:13–31

    Google Scholar 

  • Kinnamon, J.C., Taylor, B.J., Delay, R.J., Roper, S.D. 1985. Ultrastructure of mouse vallate taste buds: I. Taste cells and their associated synapses.J. Comp. Neurol. 235:48–60

    Google Scholar 

  • Kinnamon, S.C., Dionne, V.E., Beam, K.G. 1988. Apical localization of K+ channels in taste cells provides the basis for sourtaste transduction.Proc. Natl. Acad. Sci. USA 85:7023–7027

    Google Scholar 

  • Kinnamon, S.C., Roper, S.D. 1988. Membrane properties of isolated mudpuppy taste cells.J. Gen. Physiol. 91:351–371

    Google Scholar 

  • Mierson, S., Heck, G.L., DeSimone, S.K., Biber, T.U.L., DeSimone, J.A. 1985. The identity of the current carriers in canine lingual epithelium in vitro.Biochim. Biophys. Acta 816:283–293

    Google Scholar 

  • Murray, R.G., Murray, A., Fujimoto, S. 1969. Fine structure of gustatory cells in rabbit taste buds.J. Ultrastr. Res. 127:444–461

    Google Scholar 

  • Nagahama, S., Kobatake, Y., Kurihara, K. 1982. Effect of Ca2+, cyclic GMP, and cyclic AMP added to artificial solution perfusing lingual artery on frog gustatory nerve responses.J. Gen. Physiol. 80:785–800

    Google Scholar 

  • Ozeki, M. 1971. Conductance changes associated with receptor potentials of gustatory cells in rat.J. Gen. Physiol. 58:688–699

    Google Scholar 

  • Pfaff, D.W. (editor) 1985. Taste, Olfaction and the Central Nervous System. Rockefeller University Press, New York

    Google Scholar 

  • Roper, S.D. 1989. The cell biology of vertebrate taste receptors.Annu. Rev. Neurosci. 12:329–353

    Google Scholar 

  • Roper, S.D., McBride, D.W., Jr. 1989. Distribution of ion channels on taste cells and its relationship to chemosensory transduction.J. Membrane Biol. 109:29–39

    Google Scholar 

  • Sato, T. 1980. Recent advances in the physiology of taste cells.Prog. Neurobiol. 14:25–67

    Google Scholar 

  • Schiffman, S.S., Hopfinger, A.J., Mazur, R.H. 1986. The search for receptors that mediate sweetness.In: The Receptors. Vol. IV, pp. 315–377. P.M. Conn, editor. Academic, New York

    Google Scholar 

  • Schiffman, S.S., Lockhead, E., Maes, F.W. 1983. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners.Proc. Natl. Acad. Sci. USA 80:6136–6140

    Google Scholar 

  • Simon, S.A., Robb, R., Schiffman, S.S. 1988. Transport pathways in rat lingual epithelium.Pharmacol. Biochem. Behav. 29:257–267

    Google Scholar 

  • Spitzer, N.C. 1979. Ion channels in development.Annu. Rev. Neurosci. 2:363–397

    Google Scholar 

  • Striem, B.J., Pace, U., Zehavi, U., Naim, M., Lancet, D. 1989. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes.Biochem. J. 260:121–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akabas, M., Dodd, J. & Al-Awqati, Q. Identification of electrophysiologically distinct subpopulations of rat taste cells. J. Membrain Biol. 114, 71–78 (1990). https://doi.org/10.1007/BF01869386

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869386

Key Words

Navigation