Skip to main content
Log in

Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The overall on- and off-rate constants for blockage of epithelial Na channels by amiloride analogs were estimated by noise analysis of the stationary Na current traversing frog skin epithelium. The (2-position) side chain structure of amiloride was varied in order to obtain structure/rate constant relationships. (1) Hydrophobic chain elongations (benzamil and related compounds of high blocking potency) increase the stability of the blocking complex (lowered off-rate), explained by attachment of the added phenyl moiety to a hydrophobic area near the site of side chain interaction with the channel protein. (2) Some other chain modifications show that the on-rate, which is smaller than a diffusion-limited rate, varies with side chain structure. In several cases this effect is not attributable to steric hindrance on encounter, and implies that the side chain interacts briefly with the channel protein (encounter complex) before the main blocking position of the molecule is attained. The encounter complex must be labile since the overall rate constants of blockage are not concentration-dependent. (3) In two cases, changes at the 2-position side chain and at other ring ligands, with known effects on the blocking rate constants, could be combined in one analog. The rate constants of blocking by the resulting compounds indicate that the structural changes have additive effects in terms of activation energies. (4) Along with other observations (voltage dependence of the rate constants and competition with the transported Na ion), these results suggest a blocking process of at least two steps. It appears that initially the 2-position side chain invades the outward-facing channel entrance, establishing a labile complex. Then the molecule is either released completely (no block) or the 6-ligand of the pyrazine ring gains access to its receptor counterpart, thus establishing the blocking complex, the lifetime of which is strongly determined by the electronegativity of the 6-ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramcheck, F.J., Van Driessche, W., Helman, S.I. 1985. Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270.J. Gen. Physiol. 85:555–582

    Google Scholar 

  • Aceves, J., Cuthbert, A.W. 1979. Uptake of (3H)-benzamil at different sodium concentrations. Inferences regarding the regulation of sodium permeability.J. Physiol. (London) 295:491–504

    Google Scholar 

  • Aceves, J., Cuthbert, A.W., Edwardson, J.M. 1979. Estimation of the density of sodium entry sites in, frog skin epithelium from the uptake of (3H)-benzamil.J. Physiol. (London) 295:477–490

    Google Scholar 

  • Alberty, R.A., Hammes, G.G. 1958. Application of the theory of diffusion controlled reactions to enzyme kinetics.J. Phys. Chem. 62:154–159

    Google Scholar 

  • Balaban, R.S., Mandel, L.J., Benos, D.J. 1979. On the crossreactivity of amiloride and 2,4,6-triaminopyrimidine (TAP) for the cellular entry and tight junctional cation permeation pathways in epithelia.J. Membrane Biol. 49:363–390

    Google Scholar 

  • Benos, D.J. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells.Am. J. Physiol. 242:C131-C145

    Google Scholar 

  • Benos, D.J., Simon, S.A., Mandel, L.J., Cala, P.M. 1976. Effect of amiloride and some of its analogs on cation transport in isolated frog skin and thin lipid membranes.J. Gen. Physiol. 68:43–63

    Google Scholar 

  • Bicking, J.B., Cragoe, E.J., Jr. 1970. 1-(3-Aminopyrazinoyl)-4,5,5-trisubstituted Biguanidin Products.U.S. Patent 3,531,484, September 29

  • Bicking, J.B., Mason, J.W., Woltersdorf, O.W., Jr., Jones, J.H., Kwong, S.F., Robb, C.M., Cragoe, E.J., Jr. 1965. Pyrazine diuretics. I. N-Amidino-3-amino-6-halopyrazinecarboxamides.J. Med. Chem. 8:638–642

    Google Scholar 

  • Bingham, R.C., Dewar, M.J.S., Lo, D.H. 1975. Ground states of molecules. XXV. MINDO/3. An improved version of the MINDO semiempirical SCF-MO method.Am. J. Chem. Soc. 97:1285–1293

    Google Scholar 

  • Christensen, O., Bindslev, N. 1982. Fluctuation analysis of short-circuit current in a warm-blooded sodium-retaining epithelium: Site current, density, and interaction with triamterene.J. Membrane Biol. 65:19–30

    Google Scholar 

  • Cragoe, E.J., Jr. 1979. Structure activity relationships in the amiloride series.In: Amiloride and Epithelial Sodium Transport. A.W. Cuthbert, G.M. Fanelli, Jr., and A. Scriabine, editors. pp. 1–20. Urban and Schwarzenberg, Baltimore-Munich

    Google Scholar 

  • Cragoe, E.J., Jr., Bicking, J.B., 1971. (3-Amino-Pyrazonoyl)-sulfamides and their preparation.U.S. Patent 3, 573, 305 March 10

  • Cragoe, E.J, Jr., Shepard, K.L. 1971. Process for the preparation of 3-aminopyrazinoylureas.U.S. Patent 3, 575, 957 April 20

  • Cragoe, E.J., Jr., Woltersdorf, O.W., Jr., Bicking, J.B., Kwong, S.F., Jones, J.H. 1967. Pyrazine diuretics. II. N-amidino-3-amino-5-substituted 6-halopyrazinecarboxamides.J. Med. Chem. 10:66–75

    Google Scholar 

  • Cragoe, E.J., Jr., Woltersdorf, O.W., Jr., Bock, M.G 1979. Pyrazine-2-carbonyloxyguanidines.U.S. Patent 4,145,551 March 20

  • Cuthbert, A.W. 1976. Importance of guanidinium groups for blocking sodium channels in epithelia.Mol. Pharmacol. 12:945–957

    Google Scholar 

  • Cuthbert, A.W. 1981. Sodium entry step in transporting epithelia: Results of ligand-binding studies.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 181–195. Raven, New York

    Google Scholar 

  • Cuthbert, A.W., Fanelli, G.M. 1978. Effects of some pyrazine carboxamides on sodium transport in frog skin. Br. J. Pharmacol.63:139–149

    Google Scholar 

  • Eigen, M., Kruse, W., Maas, G., DeMaeyer, L. 1964. Rate constants of proteolytic reactions in aqueous solution.Prog. Reaction Kinet. 2:286–318

    Google Scholar 

  • Eyring, H., Lumry, R., Woodbury, J.W. 1949. Some applications of modern rate theory to physiological systems.Rec. Chem. Prog. 10:100–114

    Google Scholar 

  • Fanestil, D.D., Vaughn, D.A. 1979. Inhibition of short-circuit current by triaminopyrimidine in isolated toad urinary bladder.Am. J. Physiol. 236:C221-C224

    Google Scholar 

  • Frehland, E., Hoshiko, T., Machlup, S. 1983. Competitive blocking of apical sodium channels in epithelia.Biochim. Biophys. Acta 732:636–646

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Garvin, J.L., Simon, S.A., Cragoe, E.J., Jr., Mandel, L.J. 1985. Phenamil: An irreversible inhibitor of sodium channels in the toad urinary bladder.J. Membrane Biol. 87:45–54

    Google Scholar 

  • Green, W.N., Weiss, L.B., Andersen, O.S. 1986. The tetrodotoxin and saxitoxin binding site of voltage-dependent sodium channels is negatively charged and distant from the permeation pathway.Biophys. J. 49:40a

    Google Scholar 

  • Hamilton, K.L., Eaton, D.C. 1985. Single channel recordings from the amiloride-sensitive epithelial Na+ channel.Am. J. Physiol. 249:C200-C207

    Google Scholar 

  • Hammes, G.G. 1968. Relaxation spectrometry of biological systems.Adv. Protein Chem. 23:1–57

    Google Scholar 

  • Haselkorn, D., Friedman, S., Givol, D., Pecht, I. 1974. Kinetic mapping of the antibody combining site by chemical relaxation spectrometry.Biochemistry 13:2210–2222

    Google Scholar 

  • Hille, B. 1975. The receptor for tetrodotoxin and saxitoxin.Biophys. J. 15:615–619

    Google Scholar 

  • Hille, B. 1984. Ionic channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hoshiko, T., Van Driessche, W. 1981. Triamterene-induced sodium current fluctuations in frog skin.Arch. Int. Physiol. Biochim. 89:P58-P60

    Google Scholar 

  • Hoshiko, T., Van Driessche, W., 1986. Effect of sodium on amiloride-and triamterene-induced current fluctuations in isolated frog skin.J. Gen. Physiol. 87:425–442

    Google Scholar 

  • Johnson, F.H., Eyring, H., Polissar, M.J. 1954. The Kinetic Basis of Molecular Biology, Chapter 14. John Wiley and Sons, New York

    Google Scholar 

  • Jones, J.H., Cragoe, E.J., Jr. 1968. Pyrazine diuretics. V. N-amidino-3-aminopyrazinecarboxamidines and analogs 2,4-diaminopteridines.J. Med. Chem. 11:322

    Google Scholar 

  • Kao, C.Y., Walker, S.E. 1982. Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogs on frog muscle and squid axon.J. Physiol. (London) 323:619–637

    Google Scholar 

  • King, R.W., Burgen, A.S.V. 1976. Kinetic aspects of structure-activity relations: The binding of sulphonamides by carbonic anhydrase.Proc. R. Soc. London B 193:107–125

    Google Scholar 

  • Li, J.H.-Y., Cragoe, E.J., Jr., Lindemann, B. 1981. Dual attachment of high potency amiloride analogs to epithelial Na-channels. VIIth Int. Biophys. Congress, Mexico City, pp. 200

  • Li, J.H.-Y., Cragoe, E.J., Jr., Lindemann, B. 1985. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: I. Pyrazine-ring modifications.J. Membrane. Biol. 83:45–56

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1979. Blockage of epithelial Na-channels by amiloride analogs: Dependence of rate constants on drug structure.Pfluegers Arch. 379:R18

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1981. pH dependence of apical Na transport in frog skin.In: Advances in Physiological Sciences. J. Salanki, editor. pp 151–155. Pergamon, London

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1983a. Chemical stimulation of Na transport through amiloride blockable channels of frog skin epithelium.J. Membrane Biol. 75:179–192

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1983b. Competitive blocking of epithelial Na channels by organic cations: The relationship between macroscopic and microscopic inhibition constants.J. Membrane Biol. 76:235–251

    Google Scholar 

  • Lindemann, B. 1980. The beginning of fluctuation analysis of epithelial ion transport.J. Membrane Biol. 54:1–11

    Google Scholar 

  • Lindemann, B. 1984. Fluctuation analysis of sodium channels in epithelia.Annu. Rev. Physiol. 46:497–515

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1978. The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin.In: Membrane Transport Processes. Vol. 1, pp. 155–178. J.F. Hoffman, editor. Raven, New York

    Google Scholar 

  • Lindemann, B., Warncke, J. 1985. Dependence of the blocking rate constants of amiloride on the mucosal Na concentration.Pfluegers Arch. 403:R13

    Google Scholar 

  • Moreno, J.H. 1974. Blockage of cation permeability across the tight junction of gallbladder and other leaky epithelia.Nature (London) 251:150–151

    Google Scholar 

  • Neumcke, B., Stämpfli, R. 1985. Displacement of TTX from Na channels by Na+, Li+, K+ ions.Pfluegers Arch. 403:R41

    Google Scholar 

  • Palmer, L.G. 1984. Voltage dependence of amiloride inhibition of apical membrane Na conductance in toad urinary bladder.J. Membrane Biol. 80:153–165

    Google Scholar 

  • Palmer, L.G. 1985. Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder.J. Membrane Biol. 87:191–199

    Google Scholar 

  • Reinhardt, R., Garty, H., Lindemann, B. 1985. Amiloride-blockable Na-channels observed after fusion of membrane vesicles from toad urinary bladder to planar phospholipid bilayers.Pfluegers Arch. 405:R30

    Google Scholar 

  • Sariban-Sohraby, S., Benos, D.J. 1986 The amiloride-sensitive sodium channel.Am. J. Physiol. 250:C175-C190

    Google Scholar 

  • Shepard, K.L., Halczenko, W., Cragoe, E.J., Jr. 1969a. 3,5-Diamino-6-chloropyrazinecarboxylic acid active esters' and their reactions.Tetrahedron Lett. 54:4757–4760

    Google Scholar 

  • Shepard, K.L., Halczenko, W., Cragoe, E.J., Jr. 1977. Activated esters of substituted pyrazinecarboxylic acids.J. Heterocyclic Chem. 13:1219–1224

    Google Scholar 

  • Shepard, K.L., Mason, J.W., Woltersdorf, O.W., Jr., Jones, J.H., Cragoe, E.J., Jr. 1969b. Pyrazine diuretics. VI (Pyrazine-carboxamido) guanidines.J. Med. Chem. 12:280–285

    Google Scholar 

  • Smith, R.L., Cochran, D.W., Gund, P., Cragoe, E.J., Jr. 1979. Proton, carbon-13, and nitrogen-15 nuclear magnetic resonance and CNDO/2 studies on the tautomerism and conformation of amiloride, a novel acylguanidin.J. Am. Chem. Soc. 101:191–201

    Google Scholar 

  • Thiel, W. 1981. The MNDOC method, a correlated version of the MNDO model.J. Am. Chem. Soc. 103:1413–1420

    Google Scholar 

  • Warncke, J., Lindemann, B. 1985a., Voltage dependence of Na channel blockage by amiloride: Relaxation effects in admitance spectra.J. Membrane Biol. 86:255–265

    Google Scholar 

  • Warncke, J., Lindemann, B. 1985b. Voltage dependence of the blocking rate constants of amiloride at apical Na channels.Pfluegers Arch. 405 (Suppl. 1:S89-S94

    Google Scholar 

  • Zeiske, W. 1975. The influence of 2,4,6-triaminopyrimidine on Na transport in frog skin.Pfluegers Arch. 359:R127

    Google Scholar 

  • Zeiske, W., Lindemann, B. 1974. Chemical stimulation of Na current through the outer surface of frog skin epithelium.Biochim. Biophys. Acta 352:323–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.H.Y., Cragoe, E.J. & Lindemann, B. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications. J. Membrain Biol. 95, 171–185 (1987). https://doi.org/10.1007/BF01869162

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869162

Key Words

Navigation