Skip to main content
Log in

On the environment and the rotational motion of amphiphilic flavins in artificial membrane vesicles as studied by fluorescence

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The incorporation of four amphiphilic flavins (“amphiflavins”) as fluorescence markers bearing C18-hydrocarbon chains at various positions of the chromophore into artificial membrane vesicles has been investigated. The vesicles utilized were made from three different saturated phospholipids. The stability of the flavin-charged vesicles was found to be good over several days, depending somewhat on the temperature, the pH, and their concentration. A marked increase of the fluorescence quantum yield near the vesicle phase transition (crystalline → liquid crystalline) was found which was taken to indicate that the flavin nuclei are imbedded more deeply into the hydrophobic portion of the membranes. This is further supported by a hypsochromic shift of the near flavin UV-peak and the increase of absorbance at 450 nm upon melting. Rotational relaxation times of the various amphiflavins bound to the different vesicles are obtained from measurements of the fluorescence polarizations as a function of temperature. From these data, the microviscosities in the region of the chromophors are calculated. Measurements of the fluorescence polarization as a function of the solvent viscosity and vesicle phase (crystalline-liquid crystalline) indicate that below the phase transition the flavin nucleus is protected from the suspension medium by a lipid-water interphase, which softens above phase transition. The dependence of the flavin orientation and microenvironment on the position of the substitution of the aliphatic chain is reflected in the differences of the fluorescence yields and the shape of the emission spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badley, R.A. 1976. Fluorescent probing of dynamic and molecular organization of biological membranes.In: Modern Fluorescence Spectroscopy, 2. E.L. Wehre, editor. Heyden, London-New York-Rheine

    Google Scholar 

  2. Badley, R.A., Martin, W.G., Schneider, H. 1973. Dynamic behavior of fluorescent probes in lipid bilayer model membranes.Biochemistry 12:268

    Google Scholar 

  3. Badley, R.A., Schneider, H., Martin, W.G. 1971. Orientation and motion of a fluorescence probe in model membranes.Biochem. Biophys. Res. Commun. 45:174

    Google Scholar 

  4. Bangham, A.D., Hill, M.W., Miller, N.G.A. 1974. Preparation and use of liposomes as models of biological membranes.In: Methods in Membrane Biology. E.D. Korn, editor. Plenum Press, New York-London

    Google Scholar 

  5. Barman, B.G., Tollin, G. 1972. Kinetics and equilibria in partially reduced flavin solutions.Biochemistry 25:4760

    Google Scholar 

  6. Bartlett, G.R. 1959. Phosphorus assay in column chromatography.J. Biol. Chem. 234: 466

    Google Scholar 

  7. Bayliss, N.S., McRae, E.G. 1954. Solvent effects in organic spectra: Dipole forces and the Frank-Condon principle.J. Phys. Chem. 58:1002

    Google Scholar 

  8. Bayliss, N.S., McRae, E.G. 1954. Solvent effects in spectra of aceton, crotonaldehyde, nitromethan and nitrobenzene.J. Phys. Chem. 58:1006

    Google Scholar 

  9. Blankenhorn, G. 1978. Riboflavin binding egg white flavo-protein: The role of tryptophan and tyrosin.Eur. J. Biochem. 82:155

    Google Scholar 

  10. Blasie, J.K., Worthington, C.R., Dewey, M.M. 1969. Molecular localization of frog retinal receptor photopigment by electron microscopy and low angle X-ray diffraction.J. Mol. Biol. 39:407

    Google Scholar 

  11. Blumenthal, R., Changeux, J.P., Lefever, R. 1970. Membrane excitability and dissipative instabilities.J Membrane Biol. 2:351

    Google Scholar 

  12. Bowd, A., Byrom, P., Hudson, J.B., Turnbull, J.H. 1968. Excited state of flavin coenzymes: III. Fluorescence and phosphorescence emission.Photochem. Photobiol. 8:1

    Google Scholar 

  13. Brain, R.D., Freeber, J.A., Weiss, C.V., Briggs, W.R. 1977. Blue-light induced absorbance changes in membrane fractions from corn andNeurospora.Plant Physiol. 59: 948

    Google Scholar 

  14. Brand, L., Seliskar, C.J., Turner, D.C. 1971. The effects of chemical environment on fluorescence probes.In: Probes of structure and function of the macromolecules and membranes. Vol. I, p. 17. B. Chance, C. Lee, and J.K. Kent, editors. Academic Press, New York-London

    Google Scholar 

  15. Bruice, T.C. 1976. Models and flavin catalysis.In: Progress in Bioorganic Chemistry. Vol. 4, p. 1. E.T. Kaiser, F.J. Kezdy, editors. John Wiley & Sons, New York-London-Sidney-Toronto

    Google Scholar 

  16. Calvin, M., Wang, H.H., Etine, G., Gill, D., Ferruti, P., Harpold, M.A., Klein, M.P. 1969. Biradical spin labeling for nerve membranes.Proc. Nat. Acad. Sci. USA 63:1

    Google Scholar 

  17. Chance, B., Radda, G.K. 1971. Introduction to fluorescence probes.In: Probes of structure and function of macromolecules and membranes. Vol. I, p. 11. B. Chance, C. Lee, and J.K. Kent, editors., Academic Press, New York-London

    Google Scholar 

  18. Chapman, D., Williams, R.M., Ladbrooke, B.D., 1967. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines.Chem. Phys. Lipids 1:445

    Google Scholar 

  19. Eisenbrand, J. 1966. Fluorimetrie. pp. 51–53. Wiss. Verlagsgesellschaft M.B.H., Stuttgart

    Google Scholar 

  20. Frehland, E., Trissl, H.-W. 1975. Fluorescence polarization in a planar array of pigment molecules: Theoretical treatment and application to flavins incorporated into artificial membranes.J. Membrane Biol. 31: 147

    Google Scholar 

  21. Hemmerich, P. 1976. The present status of flavin and flavoenzyme chemistry.Prog. Chem. Organic Natural Products 33: 451

    Google Scholar 

  22. Huang, C. 1969. Studies on phosphatidylcholine vesicles: Formation and physical characteristics.Biochemistry 8: 344

    Google Scholar 

  23. Hubbard, R., Bownds, D., Yoshizawa, T. 1965. The chemistry of visual photoreception.Cold Spring Harbor Symp. Quant. Biol. 30: 301

    Google Scholar 

  24. Hinz, H.J., Sturtevant, J.M. 1972. Calorimetric studies of dilute aqueous suspensions of bilayers from syntheticl-α-lecithins.J. Biol. Chem. 247 (19): 6071

    Google Scholar 

  25. Jensen, H.L. 1973. The binding of riboflavin-5′-phosphate in a flavoprotein: Flavodoxin at 2.0 A.Proc. Nat. Acad. Sci. USA 70: 3857

    Google Scholar 

  26. Jesaitis, A.J. 1974. Linear dichroism and orientation of the phycomyces photopigment.J. Gen. Physiol. 63: 1

    Google Scholar 

  27. Jesaitis, A.J., Heners, R.P., Hertel, R. 1977. Characterization of a membrane fraction containing ab-type cytochrome.Plant Physiol. 59: 941

    Google Scholar 

  28. Jones, W.S., Tamplin, W.S. 1953. Physical properties of ethylen glycol.In: Glycols. G.O. Curme, Jr., and F. Johnston, editors. p. 27. Reinhold, New York

    Google Scholar 

  29. Keith, A., Bulfield, G., Snipes, W. 1970. Spin-labeledNeurospora mitochondria.Biophys. J. 10: 618

    Google Scholar 

  30. Kotaki, A., Yagi, K. 1970. Fluorescence properties of flavins in various solvents.J. Biochem. 68: 509

    Google Scholar 

  31. Koziol, J. 1969. Studies on flavins in organic solvents: III. Spectral behaviour of lumiflavin.Photochem. Photobiol. 9: 45

    Google Scholar 

  32. Lasser, N., Feitelson, J. 1973. Excited state pk values from fluorescence measurements.J. Phys. Chem. 77: 1011

    Google Scholar 

  33. Lussan, C., Faucon, J.F. 1971. Transitions in aliphatic and polar head regions of phosphatidylcholine vesicles determined with fluorescence probes.FEBS Lett 19: 3

    Google Scholar 

  34. Marrink, J., Gruber, M. 1969. Molecular weight determination by chromatography on sepharose 4B.FEBS Lett. 4(2): 242

    Google Scholar 

  35. Parker, C.A. 1968. Measurement of fluorescence efficiency.In: Photoluminescence of solutions. p. 261. Elsevier, Amsterdam-London-New York

    Google Scholar 

  36. Perrin, F. 1929. La fluorescence des solutions.Ann. Phys. Paris 10: 169

    Google Scholar 

  37. Pohl, G.W. 1976. Spectral properties of fluorescence dyes in lecithin vesicles.Z. Naturforsch. 31c: 575

    Google Scholar 

  38. Radda, G.K., Vanderkooi, J. 1972. Can fluorescent probes tell us anything about membranes?Biochim. Biophys. Acta 265: 509

    Google Scholar 

  39. Schindler, H., Seelig, J. 1973. EPR spectra of spin labels in lipid bilayers.J. Chem. Phys. 59: 1841

    Google Scholar 

  40. Schindler, H., Seelig, J. 1974. EPR spectra of spin labels in lipid bilayers. II. Rotation of steroid spin probes.J. Chem. Phys. 61: 2946

    Google Scholar 

  41. Schmidt, W., Butler, W.L. 1976. Flavin-mediated photoreactions in artificial systems: A possible model for the blue-light photoreceptor pigment in living systems.Photochem. Photobiol. 24: 71

    Google Scholar 

  42. Schmidt, W., Hart, J., Filner, P., Poff, L. 1977a. Specific inhibition of phototropism in corn seedlings.Plant Physiol. 60: 736

    Google Scholar 

  43. Schmidt, W., Thomson, K.S.T., Butler, W. L. 1977b. Cytochromeb in plasma membrane enriched fractions from several photoresponsive organisms.Photochem. Photobiol. 26: 407

    Google Scholar 

  44. Shinkai, S., Kunitake, T. 1977. Coenzyme models. IX. Micellar catalysis of isoallox-azine (flavin) oxidation of dithiol.Bull. Chem. Soc. Jpn. 50(9):2400

    Google Scholar 

  45. Träuble, H. 1971. Phasenumwandlungen in Lipiden. Mögliche Schaltprozesse in biologischen Membranen.Naturwissenschaften 58: 277

    Google Scholar 

  46. Trissl, H.-W. 1974. Studies on the incorporation of fluorescent pigments into bilayer membranes.Biochim. Biophys. Acta 367: 326

    Google Scholar 

  47. Waggoner, A.S., Stryer, L. 1970. Fluorescent probes of biological membranes.Proc. Nat. Acad. Sci. USA 67: 579

    Google Scholar 

  48. Weber, G. 1954. Dependence of the polarization of the fluorescence on the concentration.Trans. Faraday Soc. 50: 552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, W. On the environment and the rotational motion of amphiphilic flavins in artificial membrane vesicles as studied by fluorescence. J. Membrain Biol. 47, 1–25 (1979). https://doi.org/10.1007/BF01869044

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869044

Keywords

Navigation