Skip to main content
Log in

Fusion in phospholipid spherical membranes

II. Effect of cholesterol, divalent ions and pH

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary p Effect of cholesterol, divalent ions and pH on spherical bilayer membrane fusion was studied as a function of increasing temperature. Spherical bilayer membranes were composed of natural [phosphatidylcholine (PC) and phosphatidylserine (PS)] as well as synthetic (dipalmitoyl-PC, dimyristoyl-PC and dioleoyl-PC) phospholipids.

Incorporation of cholesterol into the membrane (33% by weight) suppressed the fusion temperature and also greatly reduced the percentage of membrane fusion. The presence of 1mM divalent ions (Ca++, Mg++ or Mn++) on both sides or one side of the PC membrane did not affect appreciably its fusion characteristic with temperature, but the PS membrane fusion with temperature was greatly enhanced by the presence of divalent ions.

The variation of pH of the environmental solution in the range of 5.5∼7.0 did not affect the membrane fusion characteristic. However, at pH 8.5, the fusion with respect to temperature was shifted toward the lower temperature by approximately 3°C for PC and PS membranes, and at pH 3.0 the opposite situation was observed as the fusion temperature was increased by 6°C for PS membranes and by 4°C for PC membranes

The results seem to indicate that membrane fluidity and structural instability in the bilayer are important for membrane fusion to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahkong, Q.F., Cramp, F.C., Fisher, D., Howell, J.I., Tampion, W., Verrinda, M., Lucy, J.A. 1973. Chemically induced and thermally induced cell fusion.Nature New Biol. 242:215

    PubMed  Google Scholar 

  • Ahkong, Q.F., Tampion, W., Lucy, J.A. 1974. Mechanisms of chemically induced cell fusion.Biochem. Soc. Trans. 12:1021

    Google Scholar 

  • Breisblatt, W., Ohki, S. 1975. Fusion in phospholipid spherical membranes: I. Effect of temperature and lysolecithin.J. Membrane Biol. 23:385

    Article  Google Scholar 

  • Engelman, D.M., Rotham, J.E. 1972. The planar organization of lecithin-cholesterol bilayers.J. Biol. Chem. 247:3694

    PubMed  Google Scholar 

  • Hauser, H., Dawson, R.M.C. 1967. The binding of calcium at lipid-water interface.Eur. J. Biochem. 1:61

    PubMed  Google Scholar 

  • Hauser, H., Phillips, M.C., Barratt, M.D. 1975. Difference in the interaction of inorganic and organic (hydrophobic) cations with phosphatidylserine membranes.Biochim. Biophys. Acta 413:341

    PubMed  Google Scholar 

  • Haydon, D.A., Taylor, J. 1963. The stability and properties of bimolecular lipid leaflets in aqueous solutions.J. Theor. Biol. 4:281

    PubMed  Google Scholar 

  • Ito, T., Ohnishi, S. 1974. Calcium induced lateral phase separation in phosphatidic acidphosphatidyl choline membranes.Biochim. Biophys. Acta 352:28

    Google Scholar 

  • Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separation in phospholipid membranes induced by changes in temperature, pH and concentration of bivalent cations.Biochemistry 14:152

    Google Scholar 

  • Ladbrooke, B.D., Chapman, D. 1969. Thermal analysis of lipids, proteins and biological membranes.Chem. Phys. Lipids 3:304

    PubMed  Google Scholar 

  • Ladbrooke, B.D., Williams, R.M., Chapman, D. 1968. Studies on lecithin-cholesterol-water interaction by DSC and X-ray diffraction.Biochim. Biophys. Acta 150:333

    PubMed  Google Scholar 

  • Liberman, E.A., Nenashev, V.A. 1972a. Kinetics of adhesion and surface electrical conductivity of bimolecular phospholipid membranes.Biofizika 17:231

    PubMed  Google Scholar 

  • Liberman, E.A., Nenashev, V.A. 1972b. Modeling of the changes in permeability of cellular contact with bimolecular phospholipid membrane.Biofizika 17:1017

    PubMed  Google Scholar 

  • Lucy, J.A. 1964. Globular lipid micelles and cell membranes.J. Theor. Biol. 7:360

    Google Scholar 

  • Lucy, J.A. 1970. The fusion of biological membrane.Nature (London)227:815

    Google Scholar 

  • Neher, E. 1974. Asymmetric membranes resulting from the fusion of two black lipid membranes.Biochim. Biophys. Acta 373:327

    PubMed  Google Scholar 

  • Ohki, S. 1969. The variation of the direct current resistance of lipid bilayers.J. Colloid Interface Sci. 30:413

    PubMed  Google Scholar 

  • Ohki, S., Aono, O. 1970. Phospholipid bilayer-micelle transformation.J. Colloid Interface Sci. 32:270

    PubMed  Google Scholar 

  • Ohki, S., Breisblatt, W. 1975. Cell Fusion in Model Membrane Systems. 49th National Colloid Symposium, Potsdam, New York

  • Ohki, S., Papahadjopoulos, D. 1970. Asymmetric phospholipid membranes: Effect of pH and Ca++.In: Surface Chemistry of Biological Systems. M. Blank, editor. p. 155. Plenum Press, New York

    Google Scholar 

  • Okada, Y., Murayama, F. 1966. Requirement of calcium ions for the cell fusion reaction of animal cell by HJV.Exp. Cell Res. 44:527

    PubMed  Google Scholar 

  • Okada, I., Takeichi, M., Yasuda, K., Masamichi, J. 1974. The role of divalent cations in cell adhesion.In: Advance in Biophysics. M. Kotani, editor. Vol. 6, p. 157. University Park Press. Baltimore

    Google Scholar 

  • Pagano, R., Thomspon, T.E. 1967. Spherical lipid bilayer membranes.Biochim. Biophys. Acta 144:666

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Nir, S., Ohki, S. 1971. Permeability properties of phospholipid membranes: Effect of cholesterol and temperature.Biochim. Biophys. Acta 226:561

    Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffer, B.E. 1973. Fusion of mammalian cells by unilamellar vesicles.Biochim. Biophys. Acta 323:23

    PubMed  Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffer, B.E., Vail, W.J. 1974. Membrane fusion and molecular segregation in phospholipid vesicles.Biochim. Biophys. Acta 353:10

    Google Scholar 

  • Papahadjopoulos, D., Vail, W.J., Jacobson, K., Poste, G. 1975. Cochleate lipid cyclinders: Formation by fusion of unilamella vesicles.Biochim. Biophys. Acta 394:483

    PubMed  Google Scholar 

  • Poole, A.R., Howell, J.I., Lucy, J.A. 1970. Lysolecithin and cell fusion.Nature (London) 227:810

    Google Scholar 

  • Poste, G., Allison, A.C. 1971. Membrane fusion reaction: A theory.J. Theor. Biol. 32:165

    PubMed  Google Scholar 

  • Poste, G., Reeve, P. 1972. Inhibition of virus-induced cell fusion by local anesthetics and phenothiozine tranquilizers.J. Gen. Virol. 16:21

    PubMed  Google Scholar 

  • Rojas, E., Tobias, J.M. 1965. Membrane model: Association of inorganic cations with phospholipid monolayers.Biochim. Biophys. Acta 94:394

    PubMed  Google Scholar 

  • Seimiya, T., Ohki, S. 1973. Ionic structure of phospholipid membrane, and binding of calcium ions.Biochim. Biophys. Acta 298:546

    PubMed  Google Scholar 

  • Träuble, H., Eibl, H. 1974. Electrostatic effects on lipid phase transitions, membrane structure and ionic environment.Proc. Nat. Acad. Sci. USA 71:214

    PubMed  Google Scholar 

  • Woodin, A.M., Wieneke, A.A. 1964. The role of Ca++, ATP and ATPase in protein extrusion.Biochem. J. 90:498

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breisblatt, W., Ohki, S. Fusion in phospholipid spherical membranes. J. Membrain Biol. 29, 127–146 (1976). https://doi.org/10.1007/BF01868956

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868956

Keywords

Navigation