Skip to main content
Log in

The plasma membrane (Mg2+)-dependent adenosine triphosphatase from the human erythrocyte is not an ion pump

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The plasma membrane (Mg2+)-dependent adenosine triphosphatase ((Mg2+)-ATPase) from human erythrocytes has been tested for its ability to transport ions. Using a preparation of inside-out vesicles loaded with the pH-sensitive fluorescence probe 1-hydroxypyrene-3,6,8-trisulfonic acid (HPTS), we have demonstrated the absence of proton movement during (Mg2+)-ATPase activity. From the rate of ATP hydrolysis and the passive proton permeability of these vesicles, an upper limit of 0.03 H+ transported per ATP hydrolyzed was calculated. To verify that proton pumping could be detected in this system, the intravesicular pH was monitored during (Ca2+)-dependent adenosine triphosphatase ((Ca2+)-ATPase) activity. Proton efflux associated with (Ca2+)-ATPase activity was observed (in agreement with a recent report of proton pumping by a reconstituted erythrocyte (Ca2+)-ATPase (Niggli, V., Sigel, E., Carafoli, E. (1982)J. Biol. Chem. 257:2350–2356)) and was shown to be stimulated by calmodulin. The ability of the (Mg2+)-ATPase to pump28Mg2+,35SO 2−4 and86Rb+ was also tested, with the results leading to the conclusion that the human erythrocyte enzyme does not function as an ion transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amory, A., Goffeau, A. 1982. Characterization of the β-aspartyl phosphate intermediate formed by the proton-translocating ATPase from the yeastSchizosaccharomyces pombe.J. Biol. Chem. 257:4723–4730

    PubMed  Google Scholar 

  2. Bastide, F., Meissner, G., Fleischer, S., Post, R.L. 1973. Similarity of the active site of phosphorylation of the ATPase for transport of Na+ and K+ ions in kidney to that for transport of Ca2+ ions in the sarcoplasmic reticulum of muscle.J. Biol. Chem. 248:8385–8391

    PubMed  Google Scholar 

  3. Blostein, R., Harvey, W. 1981. (Mg2+)-ATPase of the red cell membrane may function as an ion pump.Biophys. J. 33:2a

    Google Scholar 

  4. Brown, M.S., Anderson, R.G., Goldstein, J.L. 1983. Recycling receptors: The round trip itinerary of migrant membrane proteins.Cell 32:663–667

    PubMed  Google Scholar 

  5. Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells: I.J. Memb. Biol. 15:207–226

    Google Scholar 

  6. Clement, N.R., Gould, J.M. 1981. Pyranine(8-hydroxy-1,3,6-pyrene-trisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles.Biochemistry 20:1534–1538

    PubMed  Google Scholar 

  7. Dame, J.B., Scarborough, G.A. 1980. Identification of the hydrolytic moiety of theNeurospora plasma membrane H+-ATPase and demonstration of a phosphoryl-enzyme intermediate and its catalytic mechanism.Biochemistry 19:2931–2937

    PubMed  Google Scholar 

  8. Dame, J.B., Scarborough, G.A. 1981. Identification of the phosphorylated intermediate of theNeurospora plasma membrane H+-ATPase as β-aspartyl phosphate.J. Biol. Chem. 256:10724–10730

    Google Scholar 

  9. Deamer, D.W. 1982. Proton permeability in biological membranes.In: Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions. R. Nuccitelli and D.W. Deamer, editors. pp. 173–187. Alan R. Liss, New York

    Google Scholar 

  10. Drickamer, L.K. 1975. The red cell membrane contains three different adenosine triphosphatases.J. Biol. Chem. 250:1925–1954

    Google Scholar 

  11. Forgac, M., Cantley, L., Wiedenmann, B., Altsiel, L., Branton, D. 1983. Clathrin-coated vesicles contain an ATP-dependent proton pump.Proc. Natl. Acad. Sci. USA 80:1300–1303

    PubMed  Google Scholar 

  12. Forgac, M., Chin, G. 1981. K+-independent active transport of Na+ by the (Na+, K+)-ATPase.J. Biol. Chem. 256:3645–3646

    PubMed  Google Scholar 

  13. Forgac, M., Chin, G. 1982. Na+ transport by the (Na+)-ATPase.J. Biol. Chem. 257:5652–5655

    PubMed  Google Scholar 

  14. Gantzer, M.L., Grisham, C.M. 1979. Characterization of (Mg2+)-ATPase from sheep kidney medulla: Purification.Arch. Biochem. Biophys. 198:263–267

    PubMed  Google Scholar 

  15. Giraudat, J., Roisin, M.P., Henry, J.P. 1980. Solubilization and reconstitution of the ATP-dependent proton translocase of bovine chromaffin granule membranes.Biochemistry 19:4499–4505

    PubMed  Google Scholar 

  16. Goldin, S.M. 1977. Active transport of Na+ and K+ ions by the (Na+, K+)-ATPase; Reconstitution of the purified enzyme into a well definedin vitro transport system.J. Biol. Chem. 252:5630–5642

    PubMed  Google Scholar 

  17. Guidotti, G. 1977. The structure of intrinsic membrane proteins.J. Supramolec. Struct. 7:489–497

    Google Scholar 

  18. Hasselbach, W., Makinose, M. 1963. Active Ca2+ uptake by sarcoplasmic reticulum vesicles.Biochem. Z. 339:94–111

    PubMed  Google Scholar 

  19. Knauf, P.A., Proverbio, F., Hoffman, J.F. 1974. Chemical characterization and pronase susceptibility of the Na+∶K+ pump associated phosphoprotein of human red blood cells.J. Gen. Physiol. 63:305–323

    PubMed  Google Scholar 

  20. Knauf, P.A., Proverbio, F., Hoffman, J.F. 1974. Electrophohoretic separation of different phosphoproteins associated with Ca2+-ATPase and Na+, K+-ATPase in human red cell ghosts.J. Gen. Physiol. 63:324–336

    PubMed  Google Scholar 

  21. Kyte, J. 1971. Purification of the (Na+, K+)-ATPase from the canine renal medulla.J. Biol. Chem. 246:4157–4165

    PubMed  Google Scholar 

  22. Lo, C.S., August, T.R., Liberman, U.A., Edelman, I.S. 1976. Dependence of renal (Na+, K+)-ATPase activity on thyroid status.J. Biol. Chem. 251:7826–7833

    Google Scholar 

  23. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  24. Marsh, M., Blozau, E., Helenius, A. 1983. Penetration of Semliki forest virus from acidic prelysosomal vacuoles.Cell 32:931–940

    PubMed  Google Scholar 

  25. Niggli, V., Adunyah, E.S., Penniston, J.T., Carafoli, E. 1981. Purified (Ca2+−Mg2+)-ATPase of the erythrocyte membrane: Reconstitution and effect of calmodulin and phospholipids.J. Biol. Chem. 256:395–401

    PubMed  Google Scholar 

  26. Niggli, V., Sigel, E., Carafoli, E. 1982. The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+−H+ exchange in reconstituted liposomes.J. Biol. Chem. 257:2350–2356

    PubMed  Google Scholar 

  27. Reeves, J.P., Reames, T. 1981. ATP stimulates amino acid accumulation by lysosomes incubated with amino acid methyl esters.J. Biol. Chem. 256:6047–6053

    PubMed  Google Scholar 

  28. Resh, M.D. 1982. Development of insulin responsiveness of the glucose transporter and the (Na+, K+)-ATPase duringin vitro adipocyte differentiation.J. Biol. Chem. 257:6978–6986

    PubMed  Google Scholar 

  29. Resh, M.D. 1982. Quantitation and characterization of the (Na+, K+)-ATPase in the rat adipocyte plasma membrane.J. Biol. Chem. 257:11946–11952

    PubMed  Google Scholar 

  30. Sachs, G., Chang, H.H., Rabon, E., Shackman, R., Lewin, M., Saccomani, G. 1976. A nonelectrogenic H+ pump in the plasma membrane of hog stomach.J. Biol. Chem. 251:7960–7968

    Google Scholar 

  31. Scarborough, G.A. 1980. Proton translocation catalyzed by the electrogenic ATPase in the plasma membrane ofNeurospora.Biochemistry 19:2925–2931

    PubMed  Google Scholar 

  32. Schneider, D.L. 1981. ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump.J. Biol. Chem. 256:3858–3864

    PubMed  Google Scholar 

  33. Sen, A.K., Post, R.L. 1964. Stoichiometry and localization of ATP-dependent Na+ and K+ transport in the erythrocyte.J. Biol. Chem. 239:345–352

    PubMed  Google Scholar 

  34. Smith, R.L., Zinn, K., Cantley, L.C. 1980. A study of the vanadate-trapped state of the (Na+, K+)-ATPase.J. Biol. Chem. 255:9852–9859

    PubMed  Google Scholar 

  35. Steck, T.L., Kant, J.A. 1974. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes.Methods Enzymol. 31:172–180

    PubMed  Google Scholar 

  36. Tycko, B., Maxfield, F.R. 1982. Rapid acidification of endocytic vesicles containing α2-macroglobulin.Cell 28:643–651

    PubMed  Google Scholar 

  37. Uesugi, S., Dulak, N.C., Dixon, J.F., Hexum, T.D., Dahl, J.L., Perdue, J.F., Hokin, L.E. 1971. Studies on the characterization of the (Na+, K+)-ATPase: Large scale partial purification and properties of a lubrol-solubilized bovine brain enzyme.J. Biol. Chem. 246:531–543

    PubMed  Google Scholar 

  38. Villalobo, A., Boutry, M., Goffeau, A. 1981. Electrogenic proton translocation coupled to ATP hydrolysis by the plasma membrane Mg2+-dependent ATPase of yeast in reconstituted proteoliposomes.J. Biol. Chem. 256:12081–12087

    PubMed  Google Scholar 

  39. Westerman, M.P., Pierce, L.E., Jensen, W.N. 1961. A direct method for the quantitative measurement of red cell dimensions.J. Lab. Clin. Med. 57:819–824

    PubMed  Google Scholar 

  40. Willsky, G.R. 1979. Characterization of the plasma membrane (Mg2+)-ATPase from the yeastSaccharomyces cerevisiae.J. Biol. Chem. 254:3326–3332

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forgac, M., Cantley, L. The plasma membrane (Mg2+)-dependent adenosine triphosphatase from the human erythrocyte is not an ion pump. J. Membrain Biol. 80, 185–190 (1984). https://doi.org/10.1007/BF01868774

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868774

Key Words

Navigation