Skip to main content
Log in

Linear dichroism of rhodopsin in air-water interface films

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Air-water interface films of purified cattle rhodopsin and defined phospholipids are formed by the osmotic lysis of reconstituted membrane vesicles. The interface films thus formed consist of a phospholipid monolayer containing vesicle membrane fragments. Rhodopsin molecules at the interface are restricted within the membrane fragments where they are spectrophotometrically intact and capable of undergoing photoregeneration and chemical regeneration. Multilayers of up to 8 layers can be built from these interface films. The visible absorption band of rhodopsin in these multilayers is linearly dichroic. Quantitative analysis of the linear dichroism reveals that the dipole moment of transition of the retinal chromophore in rhodopsin forms an angle of 15°±4° with the plane of the membrane fragments in the interface film. This orientation of the chromophore relative to the plane of the membrane is essentially the same as that observed in the intact retina. Thus, the orientation of rhodopsin in the interface films is similar to that in the intact disc membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applebury, M.L., Zuckerman, D.M., Lamola, A.A., Jovin, T.M. 1974. Rhodopsin purification and recombination with phospholipids assayed by the Metarhodopsin I Metarhodopsin II transition.Biochemistry 13:3448

    Google Scholar 

  • Baroin, A., Thomas, D.D., Osborne, B., Devaux, P.F. 1977. Saturation transfer electron paramagnetic resonance on membrane-bound proteins.I-rotational diffusion of rhodopsin in the visual receptor membrane. Biochem. Biophys. Res. Commun.78:442

    Google Scholar 

  • Basinger, S., Bok, D., Hall, M. 1976. Rhodopsin in the rod outer segment plasma membrane.J. Cell Biol. 69:29

    Google Scholar 

  • Blaurock, A.E., Wilkins, M.H.F. 1969. Structure of frog photoreceptor membranes.Nature (London) 223:906

    Google Scholar 

  • Blodgett, K.B., Langmuir, I. 1937. Built-up films of barium stearate and their optical properties.Physiol. Rev. 51:964

    Google Scholar 

  • Bogomolni, R.A., Hwang, S.B., Tseng, Y.W., King, G.I., Stoeckenius, W. 1977. Orientation of the bacteriorhodopsin transition dipole.Biophys. Soc. Annu. Meet. Abstr. 98a

  • Brown, P.K. 1972. Rhodopsin rotates in the visual receptor membrane.Nature New Biol. 236:35

    Google Scholar 

  • Cherry, R.J., Hsu, K., Chapman, D. 1972. Polarised absorption spectroscopy of chlorophyll-lipid membranes.Biochim. Biophys. Acta 267:512

    Google Scholar 

  • Cohen, A.I. 1963. Vertebrate retinal cells and their organization.Biol. Rev. Cambridge Philos. Soc. 38:427

    Google Scholar 

  • Cone, R.A. 1972. Rotational diffusion of rhodopsin in the visual receptor membrane.Nature New Biol. 236:39

    Google Scholar 

  • Cone, R.A., Brown, P.K. 1967. Dependence of the early receptor potential on the orientation of rhodopsin.Science 156:536

    Google Scholar 

  • Daemen, F.J.M. 1973. Vertebrate rod outer segment membranes.Biochim. Biophys. Acta 300:255

    Google Scholar 

  • Denton, E.J. 1959. The contribution of the oriented photosensitive and other molecules to the absorption of whole retina.Proc. R. Soc. London B 150:78

    Google Scholar 

  • Erecinska, M., Wilson, D.F., Blasie, J.K. 1978. Studies on the orientations of the mitochondrial redox carriers. I.Biochim. Biophys. Acta 501:53

    Google Scholar 

  • Gaines, G.L. 1966. Insoluble monolayers at liquid-gas interfaces. Interscience, New York

    Google Scholar 

  • Hagins, W.A. 1972. The visual process; excitatory mechanisms in the primary receptor cells.Annu. Rev. Biophys. Bioeng. 1:131

    Google Scholar 

  • Hagins, W.A., Jennings, W.H. 1959. Radiationless migration of electronic excitation in retinal rods.Discuss. Faraday Soc. 27:180

    Google Scholar 

  • Harosi, F.I. 1975. Absorption spectra and linear dichroism of some amphibian photoreceptors.J. Gen. Physiol. 66:357

    Google Scholar 

  • Heitzman, H. 1972. Rhodopsin is the predominant protein of rod outer segment membranes.Nature New Biol. 235:114

    Google Scholar 

  • Heyn, M.P., Cherry, R.J., Muller, U. 1977. Transient and linear dichroism studies on bacteriorhodopsin: Determination of the orientation of the 568 nm all-trans retinal chromophore.J. Molec. Biol. 117:607

    Google Scholar 

  • Hong, K., Hubbell, W.L. 1972. Preparation and properties of phospholipid bilayers containing rhodopsin.Proc. Nat. Acad. Sci. USA 69:2617

    Google Scholar 

  • Hong, K., Hubbell, W.L. 1973. Lipid requirement for rhodopsin regenerability.Biochemistry 12:4517

    Google Scholar 

  • Honig, B., Ebrey, T.G. 1974. The structure and spectra of the chromophore of the visual pigments.Annu. Rev. Biophys. Bioeng. 3:151

    Google Scholar 

  • Honig, B., Karplus, M. 1971. Implications of torsional potential of retinal isomers for visual excitation.Nature (London) 229:558

    Google Scholar 

  • Hubbard, R., Bownds, D., Yoshizawa, T. 1965. The chemistry of visual photoreception.Cold Spring. Harbor Symp. Quant. Biol. 30:301

    Google Scholar 

  • Hubbell, W., Fung, K.K., Hong, K., Chen, Y.S. 1977. Molecular anatomy and light-dependent processes in photoreceptor membranes.In: Vertebrate Photoreception. H.B. Barlow and P. Fatt, editors. Academic Press, New York

    Google Scholar 

  • Hwang, S.B., Korenbrot, J.I., Stoeckenius, W. 1977. Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films.J. Membrane Biol. 36:115

    Google Scholar 

  • Jan, L.Y., Revel, J.P. 1974. Ultrastructural localization of rhodopsin in the vertebrate retina.J. Cell Biol. 62:257

    Google Scholar 

  • Knowles, A., Dartnall, H.J.A. 1977. The photobiology of vision.In: The Eye. Vol. 2B. H. Davson, editor. Academic Press, New York

    Google Scholar 

  • Korenbrot, J.I. 1977. Ion transport in membranes: Incorporation of biological ion translocating proteins in model membrane systems.Annu. Rev. Physiol. 39:19

    Google Scholar 

  • Korenbrot, J.I., Brown, D.T., Cone, R.A. 1973. Membrane characteristics and osmotic behavior in isolated rod outer segments.J. Cell Biol. 56:389

    Google Scholar 

  • Korenbrot, J.I., Pramik, M.J. 1977. Formation, structure, and spectrophotometry of airwater interface films containing rhodopsin.J. Membrane Biol. 37:235

    Google Scholar 

  • Kusumi, A., Ohnishi, S., Ito, T., Yoshizawa, T. 1978. Rotational motion of rhodopsin in the visual receptor membrane as studied by saturation transfer spectroscopy.Biochim. Biophys. Acta 507:539

    Google Scholar 

  • Liebman, P.A. 1962.In situ microspectrophotometric studies on the pigments of single retinal rods.Biophys. J. 2:161

    Google Scholar 

  • Liebman, P.A. 1975. Birefringence, dichrosim and rod outer segment structure.In: Photoreceptor Optics. A.W. Snyder and R. Menzel, editor. Springer-Verlag, New York

    Google Scholar 

  • Liebman, P., Entine, G. 1974. Lateral diffusion of visual pigment in photoreceptor disk membranes.Science 185:457

    Google Scholar 

  • Montal, M., Korenbrot, J.I. 1976. Rhodopsin in cell membranes and the process of phototransduction.In: The Enzymes of Biological Membranes. Vol. 4, p. 365. A. Martonosi, editor. Plenum, New York

    Google Scholar 

  • Papahadjopoulos, D., Miller, N. 1967. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals.Biochim. Biophys. Acta 135:624

    Google Scholar 

  • Pober, J.S., Stryer, L. 1975. Light dissociates enzymatically cleaved rhodopsin into two different fragments.J. Molec. Biol. 95:477

    Google Scholar 

  • Poo, M., Cone, R.A. 1974. Lateral diffusion of rhodopsin in the photoreceptor membrane.Nature (London) 247:438

    Google Scholar 

  • Robinson, W.E., Gordon-Walker, A., Bownds, D. 1972. Molecular weight of frog rhodopsin.Nature New Biol. 235:112

    Google Scholar 

  • Rohlich, P. 1976. Photoreceptor membrane carbohydrate on the intradiscal surface of retinal rod discs.Nature (London) 263:789

    Google Scholar 

  • Rothschild, K.J., Clark, N.A. 1978. Infrared dichroism of oriented purple membrane.Biophys. Soc. Annu. Meet. Abstr. 74a

  • Saari, J.C. 1974. The accessibility of bovine rhodopsin in photoreceptor membranes.J. Cell Biol. 63:480

    Google Scholar 

  • Schmidt, W.J. 1938. Polarizationsoptische Analyse eines Eiweiss-Lipoid-System, erläutert am Aussenglied der Sehzellen.Kolloid Z. 85:137

    Google Scholar 

  • Sidman, R.L. 1957. The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy.J. Biophys. Biochem. Cytol. 3:15

    Google Scholar 

  • Singleton, W.S., Gray, M.S., Brown, M.L., White, J.L. 1965. Chromatographically homogeneous lecithin from egg phospholipids.J. Am. Oil Chem. Soc. 92:53

    Google Scholar 

  • Wald, G., Brown, P.K., Gibbons, I.R. 1963. The problem of visual excitation.J. Opt. Soc. Am. 53:20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenbrot, J.I., Jones, O. Linear dichroism of rhodopsin in air-water interface films. J. Membrain Biol. 46, 239–254 (1979). https://doi.org/10.1007/BF01868766

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868766

Keywords

Navigation