Skip to main content
Log in

Temperature dependence of single channel currents and the peptide libration mechanism for ion transport through the gramicidin A transmembrane channel

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A study of the temperature dependence of gramicidin A conductance of K+ in diphytanoyllecithin/n-decane membranes shows the plot of In (single channel conductance) as a function of reciprocal temperature to be nonlinear for the most probable set of conductance, states. These results are considered in terms of a series of barriers, of the dynamics of channel conformation,vis-a-vis the peptide libration mechanism, and of the effect of lipid viscosity on side chain motions again as affecting the energetics of peptide libration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, O.S., Procopio, J. 1980. Ion movements through gramicidin A channels. On the importance of the aqueous diffusion resistance and ion water interactions.Acta Physiol. Scand. Suppl. 481:27–35

    PubMed  Google Scholar 

  2. Apell, H.-J., Bamberg, E., Alpes, H., Läuger, P. 1977. Formation of ion channels by a negatively charged analog of gramicidin A.J. Membrane Biol. 31:171–188

    Google Scholar 

  3. Bamberg, E., Apell, H.-J., Alpes, H. 1977. Structure of the gramicidin A channel: Discrimination between theL, d, and the πL, d helix by electrical measurements with lipid bilayer membranes.Proc. Natl. Acad. Sci. USA 74:2402–2406

    PubMed  Google Scholar 

  4. Bamberg, E., Noda, K., Gross, E., Läuger, P. 1976. Singlechannel parameters of gramicidin A, B and C.Biochim. Biophys. Acta 419:223–228

    PubMed  Google Scholar 

  5. Bradley, R.J., Romine, W.O., Long, M.M., Ohnishi, T., Jacobs, M.A., Urry, D.W. 1977. Synthetic, peptide K+ carrier with Ca2+ inhibition.Arch. Biochem. Biophys. 178:468–474

    PubMed  Google Scholar 

  6. Bradley, R.J., Urry, D.W., Okamoto, K., Rapaka, R.S. 1978. Channel structures of gramicidin: Characterization of succinyl derivatives.Science 200:435–437

    PubMed  Google Scholar 

  7. Busath, D., Szabo, G. 1981. Gramicidin forms multi-state rectifying channels.Nature (London) 294:371–373

    Google Scholar 

  8. Debrunner, P.G., Frauenfelder, H. 1982. Dynamics of Proteins.Annu. Rev. Phys. Chem. 33:283–299

    Google Scholar 

  9. Eisenman, G., Sandblom, J.P. 1983. Energy barriers in ionic channels: Data for gramicidin A interpreted using a singlefile (3B4S″) model having three barriers separating 4 sites.In: Physical Chemistry of Transmembrane Ion Motions. G. Spach, editor. pp. 329–348. Elsevier Science, Amsterdam

    Google Scholar 

  10. Eisenman, G., Sandblom, J., Hagglund, J. 1983. Electrical behavior of single-filing channels.In: Structure and Function of Excitable Cells. D.C. Chang, I. Tasaki, W.J. Adelman, Jr., and H.R. Leuchtag, editors. pp. 383–413. Plenum, New York

    Google Scholar 

  11. Eisenman, G., Sandblom, J., Neher, E. 1978. Interactions in cation permeation through the gramicidin channel Cs, Rb, K, Na, Li Tl, H and effects of anion binding.Biophys. J. 22:307–340

    PubMed  Google Scholar 

  12. Finkelstein, A., Andersen, O.S. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport.J. Membrane Biol. 59:155–171

    Google Scholar 

  13. Henze, R., Neher, E., Trapane, T.L., Urry, D.W. 1982. Dielectric relaxation studies of ionic processes in lysolecithin-packaged gramicidin channels.J. Membrane Biol. 64:233–239

    Google Scholar 

  14. Hladky, S.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A: I. Studies of the unit conductance channel.Biochim. Biophys. Acta 274:294–312

    PubMed  Google Scholar 

  15. Hladky, S.B., Urban, B.W., Haydon, D.A. 1979. Ion movements in pores formed by gramicidin A.In: Membrane Transport Processes. C.F. Stevens and R.W. Tsien, editors. Vol. 3, p. 89. Raven Press, New York

    Google Scholar 

  16. Horn, R., Lange, K. 1983. Estimating, kinetic constants from single channel data.Biophys. J. 43:207–223

    PubMed  Google Scholar 

  17. Koeppe, R.E., II, Hodgson, K.O., Stryer, L. 1978. Helical channels in crystals of gramicidin A and of a cesium-gramicidin A complex: An X-ray diffraction study.J. Mol. Biol. 121:41–54

    PubMed  Google Scholar 

  18. Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin.Science 174:412–415

    PubMed  Google Scholar 

  19. Läuger, P. 1980. Kinetic properties of ion carriers and channels.J. Membrane Biol. 57:163–178

    Google Scholar 

  20. Ooi, T., Scott, R.A., Vanderkooi, G., Scheraga, H.A. 1967. Conformational analysis of macromolecules: IV. Helical structures of polyl-alanine, polyl-valine, poly-β-methyl,l-aspartate, poly γ-methyl-l-glutamate and polyl-tyrosine.J. Chem. Phys. 46:4410–4426

    PubMed  Google Scholar 

  21. Prasad, K.U., Trapane, T.L., Busath, D., Szabo, G., Urry, D.W. 1982. Synthesis and characterization of 1-13C-D·Leu12,14 gramicidin A.Int. J. Pept. Protein Res. 19:162–171

    PubMed  Google Scholar 

  22. Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V. 1963. Stereochemistry of polypeptide chain configurations.J. Mol. Biol. 7:95–99

    PubMed  Google Scholar 

  23. Robinson, R.A., Stokes, R.H. 1955. Electrolyte Solutions. Appendix Table 6.2, p. 452. Academic, New York

    Google Scholar 

  24. Urry, D.W. 1973. Polypeptide conformation and biological function: β-helices (π L,D-helices) as permselective, transmembrane channels.In: Conformation of Biological Molecules and Polymers—The Jerusalem Symposia on Quantum Chemistry and Biochemistry. E.D. Bergmann and B. Pullman, editors. pp. 723–736. Israel, Academy of Sciences, Jerusalem

    Google Scholar 

  25. Urry, D.W. 1984. On the molecular structure of the gramicidin transmembrane channel.In: The Enzymes of Biological Membranes. A.N. Martonosi, editor. Plenum, New York (in press)

    Google Scholar 

  26. Urry, D.W., Goodall, M.C., Glickson, J.D., Mayers, D.F. 1971. The gramicidin A transmembrane channel: Characteristics of head to head dimerizedπ (L,D) helices.Proc. Natl. Acad. Sci. USA 68:19070–1911

    Google Scholar 

  27. Urry, D.W., Prasad, K.U., Trapane, T.L. 1982. Location of monovalent cation binding sites in the gramicidin channel.Proc. Natl. Acad. Sci. USA 79:390–394

    PubMed  Google Scholar 

  28. Urry, D.W., Trapane, T.L., and Prasad, K.U. 1983. Is the gramicidin A transmembrane channel single stranded or double stranded helix? A simple, unequivocal determination.Science 221:1064–1067

    Google Scholar 

  29. Urry, D.W., Trapane, T.L., Romanowski, S., Bradley, R.J., Prasad, K.U. 1983. On the use of synthetic gramicidins in the determination of channel structure and mechanism.Int. J. Pept Protein Res. 21:16–23

    PubMed  Google Scholar 

  30. Urry, D.W., Trapane, T.L., Walker, J.T., Prasad, K.U. 1982. On the relative membrane permeability of Na+ and Ca2+: A physical basis for the messenger role of Ca2+.J. Biol. Chem. 257:6659–6661

    PubMed  Google Scholar 

  31. Urry, D.W., Venkatachalam, C.M., Prasad, K.U., Bradley, R.J., Parenti-Castelli, G., Lenaz, G. 1981. Conduction processes of the gramicidin channel.Int. J. Quant. Chem.: Quant. Biol. Symp. 8:385–399

    Google Scholar 

  32. Urry, D.W., Venkatachalam, C.M., Spisni, A., Bradley, R.J., Trapane, T.L., Prasad, K.U. 1980. The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single channel currents.J. Membrane Biol. 55:29–51

    Google Scholar 

  33. Urry, D.W., Venkatachalam, C.M., Spisni, A., Läuger, P., Khaled, M.A. 1980. Rate theory calculation of gramicidin single channel currents using NMR-derived rate constants.Proc. Natl. Acad. Sci. USA 77:2028–2032

    PubMed  Google Scholar 

  34. Urry, D.W., Walker, J.T., Trapane, T.L. 1982. Ion interactions in (1-13C)d-Val8, andd-Leu14 analogs of gramicidin A, the helix sense of the channel and location of ion binding sites.J. Membrane Biol. 69:225–231

    Google Scholar 

  35. Venkatachalam, C.M., Urry, D.W. 1984. Theoretical analysis of gramicidin A transmembrane channel: II. Energetics of helical librational states of the channel.J. Comput. Chem. 5:64–71

    Google Scholar 

  36. Weinstein, S., Wallace, B., Blout, E.R., Morrow, J.S., Veatch, W. 1979. Conformation of gramicidin A channel in phospholipid vesicles: A13C and19F nuclear magnetic resonance study.Proc. Natl. Acad. Sci. USA 76:4230–4234

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urry, D.W., Alonso-Romanowski, S., Venkatachalam, C.M. et al. Temperature dependence of single channel currents and the peptide libration mechanism for ion transport through the gramicidin A transmembrane channel. J. Membrain Biol. 81, 205–217 (1984). https://doi.org/10.1007/BF01868714

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868714

Key Words

Navigation