Skip to main content
Log in

Effects of (Na++K+-ATPase-specific antibodies on enzymatic activity and monovalent cation transport

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Antibodies have been obtained that specifically interact with the transport enzyme (Na++K+-activated ATPase. The antigen used was purified (Na++K+)-ATPase from canine renal medulla. Purified γ globulin from immunized animals, but not from control animals or preimmune serum, inhibited (Na++K+)-ATPase from canine renal medulla with reduction of activity to 33±4 (sd) % in a concentration-dependent manner. Maximum inhibition occurred in less than 5 minutes at 37°C. The Mg++-dependent, nonouabain inhibited component of activity (Mg++-ATPase) was unaffected. Fab fragments obtained by papain cleavage of the γ globulin fraction had similar inhibitory activity and specificity. These antibodies also produced varying degrees of concentration-related inhibition of canine myocardial, calf brain, and human red cell ghost (Na++K+)-ATPase, but not Mg++-ATPase activity.

Despite marked inhibition of (Na++K+)-ATPase activity in these enzyme preparations from disrupted cells, experiments with canine renal slices, guinea pig atrial strips, and human red cells showed no specific effect of antibody on ouabain-inhibitable86Rb+ uptake, indicating a lack of inhibition of active monovalent cation transport in the intact cell. When specific antibody had access to the inner surface of lysed, resealed human red cell ghosts, however, complete inhibition of (Na++K+)-ATPase-mediated22Na+ efflux was observed. Consistent with this finding was complete inhibition of (Na++K+)-ATPase activity in inside-out, but not right-side-out, red cell membrane vesicles. These experiments demonstrate immunologic cross-reactivity among (Na++K+)-ATPases from different organs and different species. In addition, they indicate that the antibody response resulting in enzyme and transport inhibition is directed against an antigenic determinant or determinants inaccessible to macromolecules at the outer cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, R.W., Koval, G.J., Siegel, G.J. 1968. Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium-activated adenosine triphosphate.Mol. Pharmacol. 4:324

    PubMed  Google Scholar 

  • Askari, I. 1971. The erythrocyte ghost.In: Methods in Pharmacology. A. Schwartz, editor. p. 347. Appleton-Century-Crofts, New York

    Google Scholar 

  • Askari, A. 1974. The effects of antibodies to Na+, K+-ATPase on the reactions catalyzed by the enzyme.Ann. N.Y. Acad. Sci. 242:372

    PubMed  Google Scholar 

  • Askari, A., Rao, S.N. 1970. Drugs affecting sodium transport in human erythrocyte ghosts.J. Pharmacol. Exp. Ther. 172:211

    PubMed  Google Scholar 

  • Askari, A., Rao, S.N. 1972. Na+, K+-ATPase complex: Effects of anticomplex antibody on the partial reactions catalyzed by the complex.Biochem. Biophys. Res. Commun. 49:1323

    PubMed  Google Scholar 

  • Averdunk, R., Günther, T., Dorn, F., Zimmermann, U. 1969. Über die Wirkung von Antikörpern auf die ATPase-Aktivität und den aktiven Na−K-Transport vonE. Coli und Menschen-Erythrozyten.Z. Naturforsch. 246:693

    Google Scholar 

  • Bauman, A., Changeux, J.P., Benda, P. 1969. Purication of membrane fragments derived from the non-excitable surface of the eel electroplax.FEBS Letters 8:145

    Google Scholar 

  • Bretscher, M.S. 1973a. Membrane structure: Some general principles.Science 181:622

    PubMed  Google Scholar 

  • Bretscher, M.S. 1973b. On labelling membranes.Nature, New Biol. 245:116

    Google Scholar 

  • Caldwell, P.C., Keynes, R.D. 1959. The effect of ouabain on the efflux of sodium from a squid giant axon.J. Physiol. 148:8P

    Google Scholar 

  • Deutsch, H.F. 1967. (NH4)2SO4 precipitation of human γG-immunoglobulin. Sec. 3.A.2.In: Methods in Immunology and Immunochemistry. C.A. Williams and M.W. Chase, editors. Vol. 1, p. 319. Academic Press, New York

    Google Scholar 

  • Dodge, J.T., Mitchell, C., Hanahan, D.J. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.Arch. Biochem. Biophys. 100:119

    PubMed  Google Scholar 

  • Edelman, G.M., Marchalonis, J.J. 1967. Methods used in studies of the structure of immunoglobulins.In: Methods in Immunology and Immunochemistry. C.A. Williams and M.W. Chase, editors. Vol. 1, p. 405. Academic Press, New York

    Google Scholar 

  • Fiske, C.H., Subbarow, Y. 1925. The colorimetric determination of phosphorus.J. Biol. Chem. 66:375

    Google Scholar 

  • Glynn, I.M., Karlish, S.J.D., Cavieres, J.D., Ellory, J.C., Lew, V.L., Jørgensen, P.L. 1974. The effects of an antiserum to Na+, K+-ATPase on the ion-transporting and hydrolytic activities of the enzyme.Ann. N.Y. Acad. Sci. 242:357

    PubMed  Google Scholar 

  • Heinz, E., Hoffman, J.F. 1965. Phosphate incorporation and Na,K-ATPase activity in human red blood cell ghosts.J. Cell. Comp. Physiol. 65:31

    Google Scholar 

  • Hoffman, J.F. 1966. The red cell membrane and the transport of sodium and potassium.Am. J. Med. 41:666

    PubMed  Google Scholar 

  • Hoffman, J.F. 1969. Invited discussion. The interaction between tritiated ouabain and the Na−K pump in red blood cells.J. Gen. Physiol. 54:343S

    Google Scholar 

  • Hunter, W.M., Greenwood, F.C. 1962. Preparation of iodine-131 labelled human growth hormone of high specific activity.Nature 194:495

    PubMed  Google Scholar 

  • Jørgensen, P.L. 1974. Purification and characterization of (Na++K+)-ATPase.Biochim. Biophys. Acta 356:53

    PubMed  Google Scholar 

  • Jørgensen, P.L., Hansen, O., Glynn, I.M., Cavieres, J.D. 1973. Antibodies to pig kidney (Na++K+)-ATPase inhibit the Na+ pump in human red cells provided they have access to the inner surface of the cell membrane.Biochim. Biophys. Acta 291:795

    PubMed  Google Scholar 

  • Kant, J.A., Steck, T.L. 1972. Cation-impermeable inside-out and right-side out vesicles from human erythrocyte membranes.Nature, New Biol. 240:26

    Google Scholar 

  • Kyte, J. 1971. Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla.J. Biol. Chem. 246:4157

    PubMed  Google Scholar 

  • Kyte, J. 1972. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase.J. Biol. Chem. 247:7642

    PubMed  Google Scholar 

  • Kyte, J. 1974. The reactions of sodium and potassium ion-activated adenosine triphosphatase with specific antibodies. Implications for the mechanism of active transport.J. Biol. Chem. 249:3652

    PubMed  Google Scholar 

  • Lane, L.K., Copenhaver, J.H., Jr., Lindenmayer, G.E., Schwartz, A. 1973. Purification and characterization of and (3H)ouabain binding to the transport adenosine triphosphatase from outer medulla of canine kidney.J. Biol. Chem. 246:7197

    Google Scholar 

  • Langer, G.A. 1968. Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility.Physiol. Rev. 48:708

    PubMed  Google Scholar 

  • Lauf, P.K. 1975. Antigen-antibody reaction and cation transport in biomembranes: Immunophysiological aspects.Biochim. Biophys. Acta 415:173

    PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.M. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  • Marchesi, V.T., Palade, G.E. 1967. The localization of Mg−Na−K-activated adenosine triphosphatase on red cell ghost membranes.J. Cell Biol. 35:385

    PubMed  Google Scholar 

  • McCans, J.L., Lane, L.K., Lindenmayer, G.E., Butler, V.P., Jr., Schwartz, A. 1974. Effects of an antibody to a highly purified Na+, K+-ATPase from canine renal medulla: Separation of the “Holoenzyme Antibody” into catalytic and cardiac glycoside receptorspecific components.Proc. Nat. Acad. Sci. USA 71:2449

    PubMed  Google Scholar 

  • Perrone, J.R., Blostein, R. 1973. Asymmetric interaction of inside-out and right-side-out erythrocyte membrane vesicles with ouabain.Biochim. Biophys. Acta 291:680

    PubMed  Google Scholar 

  • Ruoho, A., Kyte, J. 1974 Photoaffinity labeling of the ouabain-binding site on (Na++K+) adenosinetriphosphatase.Proc. Nat. Acad. Sci. USA 71:2352

    PubMed  Google Scholar 

  • Schwartz, A., Nagano, K., Nakao, M., Lindenmayer, G.E., Allen, J.C., Matsui, H. 1971. The sodium-potassium-activated adenosinetriphosphatase system.In: Methods in Pharmacology. A. Schwartz, editor. Vol. 1, p. 361. Appleton-Century-Crofts, New York

    Google Scholar 

  • Singer, S.J. 1974. The molecular organization of membranes.Annu. Rev. Biochem. 43:805

    PubMed  Google Scholar 

  • Smith, T.W., Wagner, H., Jr., Markis, J.E., Young, M. 1972. Studies on the localization of the cardiac glycoside receptor.J. Clin. Invest. 51:1777

    PubMed  Google Scholar 

  • Smith, T.W., Wagner, H., Jr., Strosberg, A.D., Young, M. 1974a. Characterization of solubilized myocardial (Na++K+)-ATPase.Ann. N.Y. Acad. Sci. 242:53

    PubMed  Google Scholar 

  • Smith, T.W., Wagner, H., Jr., Young, M. 1974b. Cardiac glycoside interaction with solubilized myocardial sodium- and potassium-dependent adenosine triphosphatase.Mol. Pharmacol. 10:626

    Google Scholar 

  • Steck, T.L. 1974. The organization of proteins in the human red blood cell membrane.J. Cell Biol. 62:1

    PubMed  Google Scholar 

  • Steck, T.L., Weinstein, R.S., Straus, J.H., Wallach, D.F.H. 1970. Inside-out red cell membrane vesicles: Preparation and purification.Science 168:255

    PubMed  Google Scholar 

  • Uesugi, S., Kahlenberg, A., Medzihradsky, F., Hokin, L.E. 1969. Studies on the characterization of the sodium-potassium transport adenosinetriphosphatase. IV. Properties of a lubrol-solubilized beef brain microsomal enzyme.Arch. Biochem. Biophys. 130:156

    PubMed  Google Scholar 

  • Wagner, H., Jr. Smith, T.W., Young, M. 1974. Resistance of active monovalent cation transport to pronase digestion of intact human erythrocytes.Arch. Biochem. Biophys. 163:95

    Google Scholar 

  • Weber, K., Osborn, M. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis.J. Biol. Chem. 244:4406

    PubMed  Google Scholar 

  • Whittam, R., Ager, M.E. 1964. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes.Biochem. J. 93:337

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A preliminary account of parts of this work has been presented previously in abstract from (J. Clin. Invest. 52: 78a, 1873).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T.W., Wagner, H. Effects of (Na++K+-ATPase-specific antibodies on enzymatic activity and monovalent cation transport. J. Membrain Biol. 25, 341–360 (1975). https://doi.org/10.1007/BF01868583

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868583

Keywords

Navigation