Skip to main content
Log in

Chemical modification ofStaphylococcus aureus α-toxin by diethylpyrocarbonate: Role of histidines in its membrane-damaging properties

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Staphylococcus aureus α-toxin causes cell damage by forming an amphiphilic hexamer that inserts into the cell membrane and generates a hydrophilic pore. To investigate the role of the three histidine residues of this toxin we modified them with diethylpyrocarbonate, obtaining N-carbethoxy-histidine whose appearance may be followed spectrophotometrically. Despite the statistical nature of random chemical modification, it was possible to establish that modification of any one of the three histidines was enough to impair α-toxin activity on red blood cells and platelets. Two out of three histidines were essential for the interaction of the toxin with model membranes such as lipid vesicles and planar bilayers. Loss of lytic activity in both natural and model membranes was due both to defective binding and to defective oligomerization. When α-toxin hexamers inserted into lipid vesicles were assayed for chemical modifiability two histidines per monomer were found to be protected from diethylpyrocarbonate modification, whereas only one was protected after delipidation of the oligomer with a detergent. A possible model for the role of each histidine in the monomer is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbuthnott, J.P., Freer, J.H., Bernheimer, A.W. 1967. Physical states of Staphylococcal α-toxin.J. Bacteriol. 94: 1170–1177

    PubMed  Google Scholar 

  2. Belmonte, G., Cescatti, L., Ferrari, B., Nicolussi, T., Ropele, M., Menestrina, G. 1987. Pore formation byStaphylococcus aureus alpha-toxin in lipid bilayers: Dependence upon temperature and toxin concentration.Eur. Biophys. J. 14:349–358

    PubMed  Google Scholar 

  3. Bhakdi, S., Mackman, N., Nicaud, J.-M., Holland, I.B. 1986Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores.Infect. Immun. 52:63–69

    PubMed  Google Scholar 

  4. Bhakdi, S., Muhly, M., Mannhardt, U., Hugo, F., Klappatek, K., Mueller-Eckhardt, C., Roka, L. 1988. Staphylococcal α-toxin promotes blood coagulation via attack on human platelets.J. Exp. Med. 168:527–542

    PubMed  Google Scholar 

  5. Bhakdi, S., Tranum-Jensen, J. 1987. Damage to mammalian cells by proteins that form transmembrane pores.Rev. Physiol. Biochem. Pharmacol. 107:147–223

    PubMed  Google Scholar 

  6. Blomqvist, L., Thelestam, M. 1986. Early events in the action of Staphylococcal alpha-toxin on the plasma membrane of adrenocortical Y1 tumor cells.Infect. Immun. 53:636–640

    PubMed  Google Scholar 

  7. Cassidy, P., Harshman, S. 1976. Studies on the binding of Staphylococcal125I-labeled α-toxin to rabbit erythrocytesBiochemistry 15:2348–2355

    PubMed  Google Scholar 

  8. Cescatti, L., Pederzolli, C., Menestrina, G. 1991. Modification of lysine residues ofStaphylococcus aureus α-toxin: Effects on its channel-forming properties.119:53–64

  9. Forti, S., Menestrina, G. 1989. Staphylococcal α-toxin increases the permeability of lipid vesicles by a cholesterol and pH dependent assembly of oligomeric channels.Eur. J. Biochem. 181:767–773

    Google Scholar 

  10. Freer, J.H. 1982. Cytolytic toxins and surface activity.Toxicon 20:217–221

    PubMed  Google Scholar 

  11. Freer, J.H., Arbuthnott, J.P. 1983. Toxins ofStaphylococcus aureus.Pharmac. Ther. 19:55–106

    Google Scholar 

  12. Freer, J.H., Arbuthnott, J.P., Bilcliffe, B. 1973. Effects of Staphylococcal α-toxin on the structure of erythrocytes membranes.J. Gen. Microbiol. 75:321–332

    PubMed  Google Scholar 

  13. Füssle, R., Bhakdi, S., Sziegoleit, A., Tranum-Jensen, J., Kranz, T., Wellensiek, H.J. 1981. On the mechanism of membrane damage byStaphylococcus aureus α-toxin.J. Cell. Biol. 91:83–94

    PubMed  Google Scholar 

  14. Gray, G.S., Kehoe, M. 1984. Primary sequence of the α-toxin gene fromStaphylococcus aureus Wood 46.Infect. Immun. 46:615–618

    PubMed  Google Scholar 

  15. Horiike, K, McCormick, D.B. 1979. Correlation between biological activity and the number of functional groups chemically modified.J. Theor. Biol. 79:403–414

    PubMed  Google Scholar 

  16. Ikigai, H., Nakae, T. 1984. The rate assay of alpha-toxin assembly in membrane.FEMS Microbiol. Lett. 24:319–322

    Google Scholar 

  17. Ikigai, H., Nakae, T. 1985. Conformational alterations in alpha-toxin fromStaphylococcus aureus, concomitant with the transformation of the water-soluble monomer to the membrane oligomer.Biochem. Biophys. Res. Commun. 130:175–181

    PubMed  Google Scholar 

  18. Kim, Y.S., Park, C. 1988. Inactivation ofAcinetobacter clacoaceticus acetate kinase by diethylpyrocarbonate.Biochim. Biophys. Acta 956:103–109

    PubMed  Google Scholar 

  19. Kinsman, O., Johnson, P., Haraldsson, I., Lindberg, M., Arbuthnott, J.P., Wadstrom, T. 1981. Decreased virulence of α-haemolytic negative and coagulase negative mutants ofStaphylococcus aureus in experimental infections in mice.In: Staphylococci and Staphylococcal Infections. J. Jeljaszewicz, editor.Zentralbl. Backteriol Suppl. 10, pp. 651–659. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

  20. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  21. McCartney, A.C., Arbuthnott, J.P. 1978. Mode of action of membrane damaging toxins produced by staphylococci.In: Bacterial Toxins and Cell Membranes. J. Jeljaszewicz and T. Wadström, editors. pp. 89–127. Academic, London

    Google Scholar 

  22. Menestrina, G. 1986. Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations.J. Membrane Biol. 90:177–190

    Google Scholar 

  23. Menestrina, G. 1988.Escherichia coli hemolysin permeablizes small unilamellar vesicles loaded with calcein by a single hit mechanism.FEBS Lett. 232:217–220

    PubMed  Google Scholar 

  24. Meyer, S.E., Cromartie, T.H. 1980. Role of essential histidine residues inl-α-hydroxy acid oxidase from rat kidney.Biochemistry 19:1874–1881

    PubMed  Google Scholar 

  25. Miles, E.W. 1977. Modification of histidyl residues in proteins by diethylpyrocarbonate.Methods. Enzymol. 47:431–442

    PubMed  Google Scholar 

  26. Radomski, M., Moncada, S. 1983. An improved method for washing of human platelets with prostacyclin.Thromb. Res. 30:383–389

    PubMed  Google Scholar 

  27. Reichwein, J., Hugo, F., Roth, M., Sinner, A., Bhakdi, S. 1987. Quantitative analysis of the binding and oligomerization of Staphylococcal alpha-toxin in target erythrocyte membranes.Infect. Immun. 55:2940–2944

    PubMed  Google Scholar 

  28. Thelestam, M., Blomqvist, L. 1988. Staphylococcal α-toxin — recent advances.Toxicon 26:51–65

    Google Scholar 

  29. Tobkes, N., Wallace B.A., Bayley, H. 1985. Secondary structure and assembly mechanism of an oligomeric channel protein.Biochemistry 24:1915–1920

    PubMed  Google Scholar 

  30. Tsou, C.-L. 1962. Relation between modification of functional groups of proteins and their biological activity: I. A graphical method for the determination of the number and type of essential groups.Sci. Sin. 11:1535–1558

    PubMed  Google Scholar 

  31. Watanabe, M., Tomita, T., Yasuda, T. 1987. Membranedamaging action of staphylococcal α-toxin on phospholipid cholesterol liposomes.Biochim. Biophys. Acta 898:257–265

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pederzolli, C., Cescatti, L. & Menestrina, G. Chemical modification ofStaphylococcus aureus α-toxin by diethylpyrocarbonate: Role of histidines in its membrane-damaging properties. J. Membrain Biol. 119, 41–52 (1991). https://doi.org/10.1007/BF01868539

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868539

Key Words

Navigation