Skip to main content
Log in

Properties of a synthetic plasma membrane marker: Fluorescent-Mercury-Dextran

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Aminoethyl-Dextran T 10 (mol wt approx. 10,000) was conjugated withp-Chloromercuribenzoic acid (pCMB) and labeled with fluorescein isothiocyanate (FITC). This coupling procedure does not affect the mercurial function ofpCMB moiety of Fluorescent Mercury Dextran T 10 (FMD) since on the basis of mercury content itsK i-value for the (Na+−K+)-ATPase from rat kidney plasma membranes is identical with theK i -value of unconjugatedpCMB (3×10−6 m). FMD binds to plasma membranes if applied in vivo, which could be shown in experiments in which rat kidneys were perfused with FMD and the plasma membranes isolated after the perfusion. The membrane-FMD complex is stable during common isolation steps such as differential centrifugation, sucrose density gradient centrifugation and free-flow electrophoresis. This was shown by in vitro binding studies of FMD with isolated plasma membranes from rat kidney cortex. FMD may be removed from the plasma membranes by the addition of 1×10−4 m dithiotreitol. Since F-aminoethyl-Dextran T 10 (withoutpCMB) does not interact with the plasma membranes, it is suggested that the binding of FMD to plasma membranes may involve a Hg-SH reaction. FMD does not penetrate into rat kidney cells in contrast topCMB, but can cross capillaries. Thus, FMD seems to be suitable (a) to label luminal and contraluminal surfaces of plasma membranes of epithelial structures, and (b) to be used as a fluorescent marker for plasma membranes during succeeding isolation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartlett, G. R. 1959. Phosphorus assay in colum chromatography.J. Biol. Chem. 234:466

    PubMed  Google Scholar 

  2. Berg, H. C. 1969. Sulfanilic acid diazonium salt: A label for the outside of the human erythrocyte membrane.Biochim. Biophys. Acta 183:65

    PubMed  Google Scholar 

  3. Bretscher, M. S. 1971. Human erythrocyte membranes: Specific labelling of surface proteins.J. Mol. Biol. 58:775

    PubMed  Google Scholar 

  4. Bretscher, M. S. 1971. A major protein which spans the human erythrocyte membrane.J. Mol. Biol. 59:351

    PubMed  Google Scholar 

  5. Carrol, N. V., Longly, R. W., Roe, J. H. 1956. The determination of glycogen in liver and muscle by use of anthrone reagent.J. Biol. Chem. 220:583

    PubMed  Google Scholar 

  6. Eldjarn, L., Jellum, E. 1963. Organomercurial-polysaccharide, a chromatographic material for the separation and isolation of SH-proteins.Acta Chem. Scand. 17:2610

    Google Scholar 

  7. Fiske, C. H., Subbarow, Y. 1925. The colorimetric determination of phosphorus.J. Biol. Chem. 66:375

    Google Scholar 

  8. Habeeb, A. F. S. A. 1966. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid.Analyt. Biochem. 14:328

    PubMed  Google Scholar 

  9. Heidrich, H. G., Kinne, R., Kinne-Saffran, E. M., Hannig, K. 1972. The polarity of the proximal tubule cell in rat kidney. Different surface charges for the brushborder microvilli and plasma membranes from the basal infoldings.J. Cell Biol. 54:232

    PubMed  Google Scholar 

  10. Himmelspach, K., Westphal, O., Teichman, B. 1971. Use of 1-(m-aminophenyl) flavazoles for the preparation of immunogens with oligosaccharide determinant groups.Europ. J. Immunol. 1:106

    Google Scholar 

  11. Hoelzl-Wallach, D. F. 1972. The dispositions of proteins in the plasma membranes of animal cells: Analytical approaches using controlled peptidolysis and protein labels.Review on Biomembranes (BBA) 265:61

    Google Scholar 

  12. Jørgensen, P. L. 1968. Regulation of the (Na++K+)-activated ATP hydrolyzing enzyme system in rat kidney. I. The effect of adrenalectomy and the supply of sodium on the enzyme system.Biochem. Biophys. Acta 151:212

    PubMed  Google Scholar 

  13. Kinne, R., Kinne-Saffran, E. M. 1969. Isolierung und enzymatische Charakterisierung einer Bürstensaumfraktion der Rattenniere.Pflüg. Arch. Ges. Physiol. 308:1

    Google Scholar 

  14. Kinne, R., Schmitz, J. E., Kinne-Saffran, E. M. 1971. The localization of the Na+−K+-ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes.Pflüg. Arch. Ges. Physiol. 329:191

    Google Scholar 

  15. Landon, E. J., Norris, J. L. 1963. Sodium- and potassium-dependent adenosine triphosphatase activity in a rat kidney endoplasmatic reticulum fraction.Biochim. Biophys. Acta 71:266

    PubMed  Google Scholar 

  16. Lengsfeld, A. M., Hasselbach, W. 1971. Struktur und chemische Asymmetrie von Nierenmembranen. Elektronenmikroskopische Untersuchungen an verschiedenen Membranfraktionen des äußeren Nierencortex (Schwein).Histochemie 27:253

    PubMed  Google Scholar 

  17. Lowry, O. H., Rosebrough, N. I., Farr, A. L., Randall, R. L. 1951. Protein measurement with the Folin reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  18. Maddy, A. H. 1964. A fluorescent label for the outer components of the plasma membrane.Biochim. Biophys. Acta 88:390

    PubMed  Google Scholar 

  19. Martin, R. G., Ames, B. N. 1961. A method for determining the sedimentation behavior of enzymes: Application to protein mixtures.J. Biol. Chem. 236:1372

    PubMed  Google Scholar 

  20. Ohta, A., Matsumoto, J., Nagano, K., Fujita, M., Nakao, M. 1971. The inhibition of Na, K-activated adenosinetriphosphatase by a large molecule derivate ofp-chloromercuribenzoic acid at the outer surface of human red cell.Biochim. Biophys. Res. Commun.42:1127

    Google Scholar 

  21. Pardee, A. B., Watanabe, K. 1968. Location of sulfate-binding protein in salmonella typhimurium.J. Bacteriol. 96:1049

    PubMed  Google Scholar 

  22. Rinderknecht, H. 1962. Ultra-rapid fluorescent labelling proteins.Nature 193:167

    Google Scholar 

  23. Rothstein, A. 1970. Sulfhydryl groups in membrane structure and function.In: Current Topics in Membrane and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 1, p. 135. Academic Press Inc., New York.

    Google Scholar 

  24. Skou, J. C., Hilberg, C., 1965. The effect of sulfhydryl blocking reagents and of urea on the (Na+−K+)-activated enzyme system.Biochim. Biophys. Acta 110:359

    PubMed  Google Scholar 

  25. Thomas, L., Kinne, R., Frohnert, P. P. 1972. N-ethylmaleimide labeling of a phlorizin-sensitived-glucose binding site of brush border membrane from the rat kidney.Biochim. Biophys. Acta 290:125

    PubMed  Google Scholar 

  26. Ullrich, K. J., Fasold, H., Klöss, S., Rumrich, G., Salzer, M., Sato, K., Simon, B., de Vries, J. X. 1973. Effect of SH-, NH2- and COOH-site group reagents on the transport processes in the proximal convolution of the rat kidney.Pflüg. Arch. Ges. Physiol. (In press)

  27. Webb, J. L. 1966. Mercurials.In: Enzyme and Metabolic Inhibitors. Vol. II, p. 729. Academic Press Inc., New York and London.

    Google Scholar 

  28. Wizemann, V., Schulz, I., Simon, B. 1973. SH-groups on the surface of pancreas cells involved in secretin stimulation and glucose mediated secretin.Biochim. Biophys. Acta 307:366

    PubMed  Google Scholar 

  29. Yariv, J., Kalb, A. J., Katchalski, E., Goldman, R., Thomas, E. W. 1969. Two locations of the lacpermease sulfhydryl in the membrane ofE. coli.FEBS 5:173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, B., Zimmerschied, G., Kinne-Saffran, EM. et al. Properties of a synthetic plasma membrane marker: Fluorescent-Mercury-Dextran. J. Membrain Biol. 14, 85–99 (1973). https://doi.org/10.1007/BF01868071

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868071

Keywords

Navigation