Skip to main content
Log in

Electrotonic spread of current in monolayer cultures of neonatal rat heart cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The passive electrical properties of neonatal rat heart cells grown in monolayer cultures were determined. Hyperpolarizing current pulses were injected through one microelectrode via an active bridge circuit. Membrane voltage displacements caused by the injected current pulses were measured at various distances from the first with a second microelectrode. Using a modified least-squares method the experimental results were fitted to a Bessel function, which is the steady-state solution of the differential equation describing the relation between membrane voltage caused by current injection and interelectrode distance in a very large and very thin plane cell. Best fit was obtained with a space constant of 360 μm and an internal resistivity of 500 Ω cm. From these figures, specific membrane resistance was calculated to be 1,300 Ω cm2, assuming all current to leave through the upper surface of the monolayer.

The time constant of the membrane was measured from the time course of the current-induced membrane voltage displacements. From its value of 1.7 msec a membrane capacity of 1.3 μF/cm2 was calculated.

From these results and some literature data on nexus distribution (A. W. Spira,J. Ultrastruct. Res. 34:409, 1971) specific nexus resistance was calculated to range between 0.25 and 1.25 Ω cm2, depending on the amount of folding of the intercalated discs. The results suggest that spread of activation in monolayer cultures of heart cells by means of local circuit currents is very likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I. A. 1964. Handbook of Mathematical Functions. National Bureau of Standards, Washington, D. C.

    Google Scholar 

  • Azarnia, R., Loewenstein, W. R. 1971. Intercellular communication and tissue growth. V. A cancer cell strain that fails to make permeable membrane junctions with normal cells.J. Membrane Biol. 6:368.

    Google Scholar 

  • Barr, L., Dewey, M. M., Berger, W. 1965. Propagation of action potentials and the structure of the nexus in cardiac muscle.J. Gen. Physiol. 48:797.

    PubMed  Google Scholar 

  • Cedergren, B., Harary, I. 1964. In vitro studies on single beating rat heart cells. VII. Ultrastructure of the beating cell layer.J. Ultrastruct. Res. 11:443.

    PubMed  Google Scholar 

  • Couch, R. J., West, T. C., Hoff, H. E. 1969. Development of the action potential of the prenatal rat heart.Circulation Res. 24:19.

    PubMed  Google Scholar 

  • Eisenberg, R. S., Johnson, E. A. 1970. Three dimensional electrical field problems in physiology.In: Progress in Biophysics and Molecular Biology. J. A. V. Butler and D. Noble, editors. Vol. 20, p. 1 Pergamon Press, Oxford.

    Google Scholar 

  • Frank, K., Fuortes, M. G. F. V. 1956. Stimulation of spinal motoneurons with intracellular microelectrodes.J. Physiol. 134:451.

    PubMed  Google Scholar 

  • George, E. P. 1961. Resistance values in a syncytium.Aust. J. Exp. Biol. Sci. 39:267.

    Google Scholar 

  • Goshima, K. 1970. Formation of nexuses and electrotonic transmission between myocardial and FL cells in monolayer culture.Exp. Cell Res. 63:124.

    PubMed  Google Scholar 

  • Harary, I., Farley, B.. 1963. In vitro studies on single beating rat heart cells. I. Growth and Organisation.Exp. Cell Res. 29:451.

    PubMed  Google Scholar 

  • Heppner, D. B., Plonsey, R. 1970. Simulation of interaction of cardiac cells.Biophys. J. 10:1057.

    PubMed  Google Scholar 

  • Hyde, A., Blondel, B., Matter, A., Cheneval, J. P., Filloux, B., Girardier, L. 1969. Homo and heterocellular junctions in cell cultures: An electrophysiological and morphological study.In: Progress in Brain Research. K. Akert and P. G. Waser, editors. Vol. 31, p. 283. Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • Jongsma, H. J., Hollander, C. C. 1971. Synchronisation of cardiac pacemaker cells.Pflüg. Arch. Ges. Physiol. 328:263.

    Google Scholar 

  • Kloot, W. G. van der, Dane, B. 1964. Conduction of the action potential in the frog ventricle.Science 146:74.

    PubMed  Google Scholar 

  • Lehmkuhl, D., Sperelakis, N. 1963. Transmembrane potentials of trypsin-dispersed chick heart cells cultured in vitro.Amer. J. Physiol. 205:1213.

    PubMed  Google Scholar 

  • Lehmkuhl, D., Sperelakis, N. 1965. Electrotonic spread in cultured chick heart cells.J. Cell. Comp. Physiol. 66:119.

    Google Scholar 

  • Loewenstein, W. R., Kanno, Y. 1964. Studies on an epithelial (gland) cell junction. I. Modifications of surface membrane permeability.J. Cell Biol. 22:565.

    PubMed  Google Scholar 

  • Loewenstein, W. R., Socolar, S. J., Higashino, S., Kanno, Y., Davidson, H. 1965. Intercellular communication: Renal, uninary bladder, sensory and salivary gland cells.Science 149:295.

    Google Scholar 

  • Marcus, P. I., Cieciura, S. J., Puck, T. T. 1956. Clonal growth in vitro of epithelial cells from normal human tissues.J. Exp. Med. 104:615.

    Google Scholar 

  • Noble, D. 1962. The voltage dependence of the cardiac membrane conductance.Biophys. J. 2:381.

    PubMed  Google Scholar 

  • Pager, J., Bernard, C., Gargouil, Y. M. 1965. Evolution au cours de la croissance foetale de effets de l'actylcholine au niveau de l'oreillette de rat.Compt. Rend. Soc. Biol. 159:2470.

    Google Scholar 

  • Politoff, A. L., Socolar, S. J., Loewenstein, W. R. 1969. Permeability of a cell membrane junction. Dependence on energy metabolism.J. Gen. Physiol. 53:498.

    PubMed  Google Scholar 

  • Sakamoto, Y., Goto, M. 1970. A study of the membrane constants in the dog myocardium.Jap. J. Physiol. 20:30.

    PubMed  Google Scholar 

  • Schanne, O. 1969. Measurement of cytoplasmatic resistivity by means of the glass microelectrode.In: Glass Microelectrodes. M. Lavallee, O. F. Schanne, and N. C. Hebert, editors. p. 299. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Shiba, H. 1971. Heavyside's “Bessel cable” for flat simple epithelial cells with low resistive junctional membranes.J. Theoret. Biol. 30:59.

    Google Scholar 

  • Siegenbeek van Heukelom, J. 1971. Cell communication in epithelial systems. Ph. D. Thesis. University of Utrecht, The Netherlands, and Bronder-Offset, Rotterdam.

    Google Scholar 

  • Sjöstrand, F. S., Anderson, E. 1954. Electron microscopy of the intercalated disks of cardiac muscle tissue.Experientia 10:369.

    PubMed  Google Scholar 

  • Sperelakis, N. 1969. Lack of electrical coupling between contiguous myocardial cells in vertebrate hearts.In: Comparative Physiology of the Heart: Current Trends. F. W. McCann, editor. p. 135. Birkhauser, Basel.

    Google Scholar 

  • Sperelakis, N., Hoshiko, T., Berne, R. M. 1960. Nonsyncytial nature of cardiac muscle: Membrane resistance of single cells.Amer. J. Physiol. 198:531.

    PubMed  Google Scholar 

  • Sperelakis, N., Lehmkuhl, D. 1964. Effect of current on transmembrane potentials in cultured chick heart cells.J. Gen. Physiol. 47:895.

    PubMed  Google Scholar 

  • Spira, A. W. 1971. The nexus in the intercalated disk of the canine heart: Quantitative data for an estimation of its resistance.J. Ultrastruct. Res. 34:409.

    PubMed  Google Scholar 

  • Tanaka, I., Sasaki, Y. 1966. The electrotonic spread in cardiac muscle of the mouse.J. Gen. Physiol. 49:1089.

    PubMed  Google Scholar 

  • Tille, J. 1966. Electrotonic interaction between muscle fibers in the rabbit ventricle.J. Gen. Physiol. 50:189.

    PubMed  Google Scholar 

  • Trautwein, W., Kuffler, S. W., Edwards, C. 1956. Changes in membrane characteristics of heart muscle during inhibition.J. Gen. Physiol. 40:135.

    PubMed  Google Scholar 

  • Weidmann, S. 1952. The electrical constants of Purkinje fibres.J. Physiol. 118:348.

    PubMed  Google Scholar 

  • Weidmann, S. 1966. Diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle.J. Physiol. 187:323.

    PubMed  Google Scholar 

  • Weidmann, S. 1970. Electrical constants of trabecular muscle from mammalian heart.J. Physiol. 210:1041.

    PubMed  Google Scholar 

  • Wollenberger, A. 1964. Rhythmic and arrhythmic contractile activity of single myocardial cells cultured in vitro.Circulation Res. (Suppl. II), XIV–XI:184.

    Google Scholar 

  • Woodbury, J. W. 1962. Cellular electrophysiology of the heartIn: Handbook of Physiology. W. F. Hamilton, editor. Sect. 2, Circulation I, p. 237, American Physiological Society, Washington, D. C.

    Google Scholar 

  • Woodbury, J. W., Crill, W. E. 1961. On the problem of impulse conduction in the atrium.In: Nervous Inhibition. E. Florey, editor. p. 124. Pergamon Press, Oxford.

    Google Scholar 

  • Woodbury, J. W., Crill, W. E. 1970. The potential in the gap between two abutting cardiac muscle cells.Biophys. J. 10:1076.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jongsma, H.J., van Rijn, H.E. Electrotonic spread of current in monolayer cultures of neonatal rat heart cells. J. Membrain Biol. 9, 341–360 (1972). https://doi.org/10.1007/BF01868061

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868061

Keywords

Navigation