Skip to main content
Log in

Strong laws for density estimators of bernstein type

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Starting from the classical theorem of Weierstrass (and its modifications) on approximation of continuous functions by means of Bernstein polynomials a smoothed histogram type estimator is developed for estimating probability densities and its derivatives. Consistency results are obtained in form of various strong laws. In particular, one gets estimates for the rates for pointwise and uniform strong convergence of estimators for the derivatives. Moreover, for approximating the density itself the exact order of consistency is established. This is done by a law of iterated logarithm for pointwise approximation and by a law of logarithm in case of uniform approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Butzer, On the extension of Bernstein polynomials to the infinite interval,Proc. Amer. Math. Soc. 5 (1954), 547–553.MR 16, 128

    Google Scholar 

  2. P. L. Butzer, Summability of generalized Bernstein polynomials, I,Duke Math. J. 22 (1955), 617–623.MR 17, 476

    Google Scholar 

  3. M. Csörgő,Gaussian processes, strong approximations, an interplay, Ruhr-Universität, Bochum, 1980. (Lecture notes)

    Google Scholar 

  4. M. Csörgő andA. H. C. Chan, On the Erdős—Rényi increments and the P. Lévy modulus of continuity of a Kiefer process,Empirical distributions and processes (Meeting, Oberwolfach, 1976) (Lecture Notes in Mathematics, 566) Springer, Berlin, 1976; 17–32.MR 56: 1424

    Google Scholar 

  5. M. Csörgő andP. Révész,Strong approximations in probability and statistics, Academic Press, New York, 1981.MR 84d: 60050

    Google Scholar 

  6. J. Favard, Sur les multiplicateurs d'interpolation,J. Math. Pures Appl. 23 (1944), 219–247.MR 7, 436

    Google Scholar 

  7. W. Feller,An introduction to probability theory and its applications, second edition, Wiley, New York, 1971.MR 35: 1048,42: 5292

    Google Scholar 

  8. A. Földes andP. Révész, A general method for density estimation,Studia Sci. Math. Hungar. 9 (1974), 81–92.MR 51: 9338

    Google Scholar 

  9. W. Gawronski,Verallgemeinerte Bernsteinfunktionen und Schätzung einer Wahrscheinlichkeitsdichte, Universität Ulm, 1980. (Habilitationsschrift)

  10. W. Gawronski andU. Stadtmüller, On density estimation by means of Poisson's distribution,Scand. J. Statist. 7 (1980), 90–94.MR 81j: 62090

    Google Scholar 

  11. W. Gawronski andU. Stadtmüller, Smoothing histograms by means of lattice and continuous distributions,Metrika 28 (1981), 155–164.MR 82k: 62075

    Google Scholar 

  12. W. Gawronski andU. Stadtmüller, Approximation of continuous functions by generalized Favard operators,J. Approx. Theory 34 (1982), 384–396.

    Google Scholar 

  13. W. Gawronski andU. Stadtmüller, Linear combinations of iterated generalized Bernstein functions with an application to density estimation,Acta Sci. Math. (Szeged)47 (1984), 205–221.

    Google Scholar 

  14. P. Hall, Laws of the iterated logarithm for nonparametric density estimators,Z. Wahrsch. Verw. Gebiete 56 (1981), 47–61.MR 82e: 60049

    Google Scholar 

  15. J. Komlós, P. Major andG. Tusnády, An approximation of partial sums of independent RV's and the sample DF, I,Z. Wahrsch. Verw. Gebiete 32 (1975), 111–131.MR 51: 11605b

    Google Scholar 

  16. G. G. Lorentz,Bernstein polynomials, University of Toronto Press, Toronto, 1953.MR 15, 217

    Google Scholar 

  17. V. V. Petrov, Summy nezavisimyh slučainyh velicin43-1 (Sums of independent random variables)}, Nauka, Moskva, 1972.MR 48: 1288

    Google Scholar 

  18. V. V. Petrov,Sums of independent random variables, Springer, Berlin, 1975.MR 52: 9335

    Google Scholar 

  19. R.-D. Reiss, Consistency of a certain class of empirical density functions,Metrika 22 (1975), 189–203.MR 52: 15823

    Google Scholar 

  20. P. Révész, A strong law of the empirical density function,Period. Math. Hungar. 9 (1978), 317–324.MR 80b: 60047

    Google Scholar 

  21. P. Révész,How to characterize the asymptotic properties of a stochastic process by four classes of deterministic curves? Carleton Math. Series, No. 164, 1980.

  22. B. W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives,Ann. Statist. 6 (1978), 177–184.MR 57: 10904

    Google Scholar 

  23. U. Stadtmüller, Asymptotic distributions of smoothed histograms,Metrika 30 (1983), 145–158.

    Google Scholar 

  24. W. Stute, The oscillation behaviour of empirical processes,Ann. Prob. 10 (1982), 86–117.MR 83e: 60028

    Google Scholar 

  25. W. Stute, A law of the logarithm for kernel density estimators,Ann. Prob. 10 (1982), 414–422.MR 84c: 62060

    Google Scholar 

  26. O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval,J. Research Nat. Bur. Standards 45 (1950), 239–245.MR 13, 648

    Google Scholar 

  27. R. Vitale, A Bernstein polynomial approach to density estimation,Statistical inference and related topics, Academic Press, New York, 1975; 87–99.MR 53: 1832

    Google Scholar 

  28. H. Walk,Approximation unbeschränkter Funktionen durch lineare positive Operatoren, Universität Stuttgart, 1970. (Habilitationsschrift)

  29. H. Walk, Lokale Approximation unbeschränkter Funktionen und ihrer Ableitungen durch eine Klasse von Folgen linearer positiver Operatoren,Mathematica (Cluj)15 (1973), 129–142.MR 52: 6266

    Google Scholar 

  30. G. G. Walter andJ. R. Blum, Probability density estimation using delta sequences,Ann. Statist. 7 (1979), 328–340.MR 81b: 62057

    Google Scholar 

  31. B. B. Winter, Rate of strong uniform consistency of nonparametric density estimators,Studia Sci. Math. Hungar. 11 (1976), 283–295.MR 80k: 62060

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper contains parts of the author's “Habilitationsschrift” written at the Department of Mathematics of the University of Ulm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawronski, W. Strong laws for density estimators of bernstein type. Period Math Hung 16, 23–43 (1985). https://doi.org/10.1007/BF01855801

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01855801

AMS (MOS) subject classifications (1980)

Key words and phrases

Navigation